A382301 Number of integer partitions of n having a unique multiset partition into constant blocks with distinct sums.
1, 1, 2, 2, 3, 6, 8, 9, 14, 16, 25, 30, 41, 52, 69, 83, 105, 129, 164, 208, 263, 315, 388, 449, 573, 694
Offset: 0
Examples
The a(4) = 3 through a(8) = 14 partitions and their unique multiset partition into constant blocks with distinct sums: {4} {5} {6} {7} {8} {22} {1}{4} {33} {1}{6} {44} {1}{3} {2}{3} {1}{5} {2}{5} {1}{7} {11}{3} {2}{4} {3}{4} {2}{6} {1}{22} {11}{4} {11}{5} {3}{5} {2}{111} {11}{22} {1}{33} {11}{6} {1}{2}{3} {3}{22} {2}{33} {1}{11}{3} {1}{2}{4} {11}{33} {3}{1111} {11}{222} {1}{2}{5} {1}{3}{4} {1}{3}{22} {1}{4}{111} {1}{111}{22}
Crossrefs
Programs
-
Mathematica
hwt[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]*k]]; pfacs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#,d]&)/@Select[pfacs[n/d],Min@@#>=d&],{d,Select[Rest[Divisors[n]],PrimePowerQ]}]]; Table[Length[Select[IntegerPartitions[n],Length[Select[pfacs[Times@@Prime/@#],UnsameQ@@hwt/@#&]]==1&]],{n,0,10}]