This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A382304 #8 Apr 03 2025 14:57:57 %S A382304 1,2,3,4,5,8,9,11,13,16,17,25,27,29,31,32,41,43,47,59,64,67,73,79,81, %T A382304 83,101,109,113,121,125,127,128,137,139,143,149,157,163,167,169,179, %U A382304 181,191,199,211,233,241,243,256,257,269,271,277,283,289,293,313,317 %N A382304 MM-numbers of multiset partitions into sets with a common sum. %C A382304 Also products of prime numbers of squarefree index with a common sum of prime indices. %C A382304 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239. The multiset of multisets with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset of multisets with MM-number 78 is {{},{1},{1,2}}. %H A382304 Gus Wiseman, <a href="/A038041/a038041.txt">Sequences counting and ranking multiset partitions whose part lengths, sums, or averages are constant or strict.</a> %F A382304 Equals A302478 /\ A326534. %e A382304 The terms together with their prime indices of prime indices begin: %e A382304 1: {} %e A382304 2: {{}} %e A382304 3: {{1}} %e A382304 4: {{},{}} %e A382304 5: {{2}} %e A382304 8: {{},{},{}} %e A382304 9: {{1},{1}} %e A382304 11: {{3}} %e A382304 13: {{1,2}} %e A382304 16: {{},{},{},{}} %e A382304 17: {{4}} %e A382304 25: {{2},{2}} %e A382304 27: {{1},{1},{1}} %e A382304 29: {{1,3}} %e A382304 31: {{5}} %e A382304 32: {{},{},{},{},{}} %t A382304 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A382304 Select[Range[100],SameQ@@Total/@prix/@prix[#]&&And@@UnsameQ@@@prix/@prix[#]&] %Y A382304 Set partitions of this type are counted by A035470. %Y A382304 Twice-partitions of this type are counted by A279788. %Y A382304 For just strict blocks we have A302478. %Y A382304 For just a common sum we have A326534, distinct sums A326535. %Y A382304 Factorizations of this type are counted by A382080. %Y A382304 For distinct instead of equal sums we have A382201. %Y A382304 For constant instead of strict blocks we have A382215. %Y A382304 Normal multiset partitions of this type are counted by A382429. %Y A382304 A055396 gives least prime index, greatest A061395. %Y A382304 A056239 adds up prime indices, row sums of A112798. %Y A382304 A058891 counts set-systems, covering A003465, connected A323818. %Y A382304 Cf. A000720, A005117, A050320, A050326, A293511, A302242, A302494, A381635, A381636, A381995. %K A382304 nonn %O A382304 1,2 %A A382304 _Gus Wiseman_, Apr 01 2025