This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A382340 #10 Apr 17 2025 07:04:31 %S A382340 1,0,3,0,6,6,0,10,18,10,0,15,51,36,15,0,21,105,123,60,21,0,28,208,326, %T A382340 226,90,28,0,36,360,771,678,360,126,36,0,45,606,1641,1836,1161,525, %U A382340 168,45,0,55,946,3271,4431,3403,1775,721,216,55,0,66,1446,6096,10026,8982,5472,2520,948,270,66 %N A382340 Triangle read by rows: T(n,k) is the number of partitions of a 3-colored set of n objects into exactly k parts with 0 <= k <= n. %F A382340 T(n,1) = binomial(n + 2, 2) = A000217(n + 1) for n >= 1. %F A382340 T(n,n) = binomial(n + 2, 2) = A000217(n + 1). %F A382340 T(n,k) = A382045(n,k) - A382045(n,k-1) for k >= 1. %e A382340 Triangle starts: %e A382340 0 : [1] %e A382340 1 : [0, 3] %e A382340 2 : [0, 6, 6] %e A382340 3 : [0, 10, 18, 10] %e A382340 4 : [0, 15, 51, 36, 15] %e A382340 5 : [0, 21, 105, 123, 60, 21] %e A382340 6 : [0, 28, 208, 326, 226, 90, 28] %e A382340 7 : [0, 36, 360, 771, 678, 360, 126, 36] %e A382340 8 : [0, 45, 606, 1641, 1836, 1161, 525, 168, 45] %e A382340 9 : [0, 55, 946, 3271, 4431, 3403, 1775, 721, 216, 55] %e A382340 10 : [0, 66, 1446, 6096, 10026, 8982, 5472, 2520, 948, 270, 66] %e A382340 ... %p A382340 b:= proc(n, i) option remember; expand(`if`(n=0, 1, `if`(i<1, 0, add( %p A382340 b(n-i*j, min(n-i*j, i-1))*binomial(i*(i+3)/2+j, j)*x^j, j=0..n/i)))) %p A382340 end: %p A382340 T:= (n, k)-> coeff(b(n$2), x, k): %p A382340 seq(seq(T(n, k), k=0..n), n=0..10); # _Alois P. Heinz_, Mar 22 2025 %t A382340 b[n_, i_] := b[n, i] = Expand[If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, Min[n - i*j, i - 1]]*Binomial[i*(i + 3)/2 + j, j]*x^j, {j, 0, n/i}]]]]; %t A382340 T[n_, k_] := Coefficient[b[n, n], x, k]; %t A382340 Table[Table[T[n, k], {k, 0, n}], {n, 0, 10}] // Flatten (* _Jean-François Alcover_, Apr 17 2025, after _Alois P. Heinz_ *) %o A382340 (Python) %o A382340 from sympy import binomial %o A382340 from sympy.utilities.iterables import partitions %o A382340 colors = 3 - 1 # the number of colors - 1 %o A382340 def t_row( n): %o A382340 if n == 0 : return [1] %o A382340 t = list( [0] * n) %o A382340 for p in partitions( n): %o A382340 fact = 1 %o A382340 s = 0 %o A382340 for k in p : %o A382340 s += p[k] %o A382340 fact *= binomial( binomial( k + colors, colors) + p[k] - 1, p[k]) %o A382340 if s > 0 : %o A382340 t[s - 1] += fact %o A382340 return [0] + t %Y A382340 Row sums are A217093. %Y A382340 The 1-color case is A008284. %Y A382340 The 2-color case is A382339. %Y A382340 Cf. A382045. %K A382340 nonn,tabl %O A382340 0,3 %A A382340 _Peter Dolland_, Mar 22 2025