This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A382343 #19 Aug 01 2025 01:57:25 %S A382343 1,0,3,0,3,6,0,3,9,10,0,3,15,18,15,0,3,18,36,30,21,0,3,24,55,66,45,28, %T A382343 0,3,27,81,114,105,63,36,0,3,33,108,189,195,153,84,45,0,3,36,145,276, %U A382343 348,298,210,108,55,0,3,42,180,405,552,558,423,276,135,66 %N A382343 Triangle read by rows: T(n, k) is the number of partitions of n into k parts where 0 <= k <= n, and each part is one of 3 kinds. %F A382343 T(n,n) = binomial(n + 2, 2) = A000217(n + 1). %F A382343 T(n,1) = 3 for n >= 1. %F A382343 T(n,k) = A382025(n,k) - A382025(n,k-1) for 1 <= k <= n. %F A382343 Sum_{k=0..n} (-1)^k * T(n,k) = A022598(n). - _Alois P. Heinz_, Mar 27 2025 %e A382343 Triangle starts: %e A382343 0 : [1] %e A382343 1 : [0, 3] %e A382343 2 : [0, 3, 6] %e A382343 3 : [0, 3, 9, 10] %e A382343 4 : [0, 3, 15, 18, 15] %e A382343 5 : [0, 3, 18, 36, 30, 21] %e A382343 6 : [0, 3, 24, 55, 66, 45, 28] %e A382343 7 : [0, 3, 27, 81, 114, 105, 63, 36] %e A382343 8 : [0, 3, 33, 108, 189, 195, 153, 84, 45] %e A382343 9 : [0, 3, 36, 145, 276, 348, 298, 210, 108, 55] %e A382343 10 : [0, 3, 42, 180, 405, 552, 558, 423, 276, 135, 66] %e A382343 ... %p A382343 b:= proc(n, i) option remember; expand(`if`(n=0, 1, `if`(i<1, 0, %p A382343 add(x^j*b(n-i*j, min(n-i*j, i-1))*(j+2)*(j+1)/2, j=0..n/i)))) %p A382343 end: %p A382343 T:= (n, k)-> coeff(b(n$2), x, k): %p A382343 seq(seq(T(n, k), k=0..n), n=0..10); # _Alois P. Heinz_, Mar 27 2025 %t A382343 b[n_, i_] := b[n, i] = Expand[If[n == 0, 1, If[i < 1, 0, Sum[x^j*b[n-i*j, Min[n-i*j, i-1]]*(j+2)*(j+1)/2, {j, 0, n/i}]]]]; %t A382343 T[n_, k_] := Coefficient[b[n, n], x, k]; %t A382343 Table[Table[T[n, k], {k, 0, n}], {n, 0, 10}] // Flatten (* _Jean-François Alcover_, Jul 30 2025, after _Alois P. Heinz_ *) %o A382343 (Python) %o A382343 from sympy import binomial %o A382343 from sympy.utilities.iterables import partitions %o A382343 kinds = 3 - 1 # the number of part kinds - 1 %o A382343 def t_row( n): %o A382343 if n == 0 : return [1] %o A382343 t = list( [0] * n) %o A382343 for p in partitions( n): %o A382343 fact = 1 %o A382343 s = 0 %o A382343 for k in p : %o A382343 s += p[k] %o A382343 fact *= binomial( kinds + p[k], kinds) %o A382343 if s > 0 : %o A382343 t[s - 1] += fact %o A382343 return [0] + t %Y A382343 Main diagonal gives A000217(n+1). %Y A382343 Row sums give A000716. %Y A382343 Cf. A008284 (1-kind), A382342 (2-kind). %Y A382343 Cf. A022598, A382025. %K A382343 nonn,tabl %O A382343 0,3 %A A382343 _Peter Dolland_, Mar 27 2025