This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A382345 #33 Apr 07 2025 09:26:11 %S A382345 1,2,0,3,2,0,4,4,2,0,5,6,7,2,0,6,8,12,8,2,0,7,10,17,18,11,2,0,8,12,22, %T A382345 28,26,12,2,0,9,14,27,38,46,34,15,2,0,10,16,32,48,66,64,46,16,2,0,11, %U A382345 18,37,58,86,100,94,56,19,2,0,12,20,42,68,106,136,152,124,70,20,2,0 %N A382345 Square array A(n,k), n>=0, k>=0, read by antidiagonals downwards, where n unlabeled objects are distributed into k containers of two kinds. Containers may be left empty. %H A382345 Alois P. Heinz, <a href="/A382345/b382345.txt">Antidiagonals n = 0..200, flattened</a> %F A382345 A(0,k) = k + 1. %F A382345 A(1,k) = 2*k. %F A382345 A(2,k+1) = 2 + 5 * k. %F A382345 A(n,1) = 2. %F A382345 A(n,k) = Sum_{i=0..k} (k + 1 - i) * A382342(n,i) for k <= n. %F A382345 A(n,n+k) = A(n,n) + k * A000712(n). %F A382345 A(n,k) = A382342(n,k) + 2 * A(n,k-1) - A(n,k-2) for 2 <= k <= n. %F A382345 A(n,k) = A382342(n+k,k). - _Alois P. Heinz_, Mar 31 2025 %e A382345 Array starts: %e A382345 0 : [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11] %e A382345 1 : [0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20] %e A382345 2 : [0, 2, 7, 12, 17, 22, 27, 32, 37, 42, 47] %e A382345 3 : [0, 2, 8, 18, 28, 38, 48, 58, 68, 78, 88] %e A382345 4 : [0, 2, 11, 26, 46, 66, 86, 106, 126, 146, 166] %e A382345 5 : [0, 2, 12, 34, 64, 100, 136, 172, 208, 244, 280] %e A382345 6 : [0, 2, 15, 46, 94, 152, 217, 282, 347, 412, 477] %e A382345 7 : [0, 2, 16, 56, 124, 214, 316, 426, 536, 646, 756] %e A382345 8 : [0, 2, 19, 70, 167, 302, 464, 640, 825, 1010, 1195] %e A382345 9 : [0, 2, 20, 84, 212, 406, 648, 922, 1212, 1512, 1812] %e A382345 10 : [0, 2, 23, 100, 271, 542, 899, 1314, 1766, 2236, 2717] %e A382345 ... %p A382345 b:= proc(n, i) option remember; expand(`if`(n=0, 1, `if`(i<1, 0, %p A382345 add(x^j*b(n-i*j, min(n-i*j, i-1))*(j+1), j=0..n/i)))) %p A382345 end: %p A382345 A:= (n, k)-> coeff(b(n+k$2), x, k): %p A382345 seq(seq(A(n, d-n), n=0..d), d=0..11); # _Alois P. Heinz_, Mar 29 2025 %t A382345 b[n_, i_] := b[n, i] = Expand[If[n == 0, 1, If[i < 1, 0, %t A382345 Sum[x^j*b[n - i*j, Min[n - i*j, i - 1]]*(j + 1), {j, 0, n/i}]]]]; %t A382345 A[n_, k_] := Coefficient[b[n + k, n + k], x, k]; %t A382345 Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 11}] // Flatten (* _Jean-François Alcover_, Apr 07 2025, after _Alois P. Heinz_ *) %o A382345 (Python) %o A382345 from sympy.utilities.iterables import partitions %o A382345 def a_row(n, length=11) -> list[int]: %o A382345 if n == 0 : return list(range(1, length + 1)) %o A382345 t = [0] * length %o A382345 for p in partitions(n): %o A382345 fact = 1 %o A382345 s = 0 %o A382345 for k in p : %o A382345 s += p[k] %o A382345 fact *= p[k] + 1 %o A382345 if s > 0 : %o A382345 t[s] += fact %o A382345 for i in range(1, length - 1): %o A382345 t[i+1] += t[i] * 2 - t[i-1] %o A382345 return t %o A382345 for n in range(11): print(a_row(n)) %Y A382345 Antidiagonal sums give A000712. %Y A382345 Alternating antidiagonal sums give A073252. %Y A382345 Without empty containers: A381895. %Y A382345 Cf. A382342. %K A382345 nonn,tabl %O A382345 0,2 %A A382345 _Peter Dolland_, Mar 29 2025