This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A382346 #11 May 29 2025 15:46:01 %S A382346 3,12,2247 %N A382346 Number of antichains in the Bruhat order on B_n. %C A382346 The number of antichains in the Bruhat order of the Weyl group B_n (the hyperoctahedral group). %D A382346 A. Bjorner and F. Brenti, Combinatorics of Coxeter Groups, Springer, 2009, 27-64. %H A382346 V. V. Deodhar, <a href="https://doi.org/10.1016/1385-7258(78)90059-8">On Bruhat ordering and weight-lattice ordering for a Weyl group</a>, Indagationes Mathematicae, vol. 81, 1 (1978), 423-435. %e A382346 For n=1 the elements are 1 (identity) and s1, the order contains pair (1, s1). The antichains are {}, {1}, and {s1}. %e A382346 For n=2 the line (Hasse) diagram is below. %e A382346 s2*s1*s2*s1 %e A382346 / \ %e A382346 s2*s1*s2 s1*s2*s1 %e A382346 | X | %e A382346 s2*s1 s1*s2 %e A382346 | X | %e A382346 s2 s1 %e A382346 \ / %e A382346 1 %e A382346 The set of antichains is {{}, {1}, {s2}, {s2, s1}, {s1}, {s2*s1}, {s2*s1, s1*s2}, {s1*s2}, {s2*s1*s2}, {s2*s1*s2, s1*s2*s1}, {s1*s2*s1}, {s2*s1*s2*s1}}. %Y A382346 Cf. A005900 (the number of join-irreducible elements), A378072 (the size of Dedekind-MacNeille completion). %K A382346 nonn,hard,more,bref %O A382346 1,1 %A A382346 _Dmitry I. Ignatov_, May 18 2025