cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A382353 Numbers k > 0 such that A006218(k) / A018804(k) is an integer.

This page as a plain text file.
%I A382353 #13 Mar 23 2025 08:39:47
%S A382353 1,2,3,4,8,10,15,43,63,6934,316563,2428132,56264126
%N A382353 Numbers k > 0 such that A006218(k) / A018804(k) is an integer.
%C A382353 A006218(k) = A018804(k) for k = 1,2,3,4,8,10,15,63.
%e A382353 k = 15: A006218(15)/A018804(15) = 45/45 = 1 is an integer, thus k = 15 is a term.
%e A382353 So far, the quotients are: 1, 1, 1, 1, 1, 1, 1, 2, 1, 3, 2, 2, 6.
%t A382353 f[p_, e_] := (e*(p-1)/p + 1)*p^e; pil[n_] := Times @@ f @@@ FactorInteger[n]; With[{max = 10^4}, Position[Accumulate[Array[DivisorSigma[0, #]&, max]] / Array[pil, max], _?IntegerQ] // Flatten] (* _Amiram Eldar_, Mar 22 2025 *)
%o A382353 (PARI) isok(m) = denominator(sum(k=1, m, m\k)/sumdiv(m, d, m*eulerphi(d)/d)) == 1; \\ _Michel Marcus_, Mar 22 2025
%Y A382353 Cf. A006218, A018804.
%K A382353 nonn,more
%O A382353 1,2
%A A382353 _Ctibor O. Zizka_, Mar 22 2025
%E A382353 a(11)-a(13) from _Amiram Eldar_, Mar 22 2025