cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A382363 Rectangular array read by antidiagonals, T(n,k) is the number of labeled digraphs on [n] along with a (coloring) function c:[n] -> [k] such that for all u,v in [n], u->v implies u<=v and c(u)<=c(v), n>=0, k>=0.

This page as a plain text file.
%I A382363 #29 Mar 24 2025 06:12:39
%S A382363 1,0,1,0,1,1,0,2,2,1,0,8,7,3,1,0,64,44,15,4,1,0,1024,508,129,26,5,1,0,
%T A382363 32768,10976,1962,284,40,6,1,0,2097152,450496,54036,5371,530,57,7,1,0,
%U A382363 268435456,35535872,2747880,180424,11995,888,77,8,1,0,68719476736,5435551744,262091808,10997576,476165,23409,1379,100,9,1
%N A382363 Rectangular array read by antidiagonals, T(n,k) is the number of labeled digraphs on [n] along with a (coloring) function c:[n] -> [k] such that for all u,v in [n], u->v implies u<=v and c(u)<=c(v), n>=0, k>=0.
%H A382363 Kassie Archer, Ira M. Gessel, Christina Graves, and Xuming Liang, <a href="https://doi.org/10.1016/j.disc.2020.112041">Counting acyclic and strong digraphs by descents</a>, Discrete Mathematics, Vol. 343, No. 11 (2020), 112041; <a href="https://arxiv.org/abs/1909.01550">arXiv preprint</a>, arXiv:1909.01550 [math.CO], 2019-2020; See Table 2.
%H A382363 R. P. Stanley, <a href="http://www-math.mit.edu/~rstan/pubs/pubfiles/18.pdf">Acyclic orientation of graphs,</a> Discrete Math. 5 (1973), 171-178. North Holland Publishing Company.
%F A382363 Sum_{n>=0} T(n,k)/A005329(n) = 1/e(-x)^k, where e(x) = Sum_{n>=0}x^n/A005329(n).
%e A382363   1,    1,     1,     1,      1,      1,       1,...
%e A382363   0,    1,     2,     3,      4,      5,       6,...
%e A382363   0,    2,     7,    15,     26,     40,      57,...
%e A382363   0,    8,    44,   129,    284,    530,     888,...
%e A382363   0,   64,   508,  1962,   5371,  11995,   23409,...
%e A382363   0, 1024, 10976, 54036, 180424, 476165, 1072854,...
%t A382363 nn = 6; B[n_] := QFactorial[n, 2];e[z_] := Sum[z^n/B[n], {n, 0, nn}]; zetapolys = Drop[Map[Expand[InterpolatingPolynomial[#, x]] &,Transpose[Table[Table[B[n], {n, 0, nn}] CoefficientList[Series[1/e[-z]^k, {z, 0, nn}], z], {k,1,nn}]]],-1];Table[zetapolys /. x -> i, {i, 0, nn}] // Transpose // Grid
%Y A382363 Cf. A382223, A006125 (column k=1).
%K A382363 nonn,tabl
%O A382363 0,8
%A A382363 _Geoffrey Critzer_, Mar 23 2025