cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A382367 Expansion of 1/( 1 - Sum_{k>=0} x^(3^k) / (1 - x^(3^k)) ).

This page as a plain text file.
%I A382367 #11 Mar 23 2025 10:08:18
%S A382367 1,1,2,5,10,21,46,97,206,442,940,2002,4272,9103,19400,41360,88156,
%T A382367 187901,400534,853747,1819782,3878965,8268160,17623888,37566072,
%U A382367 80073580,170680002,363811370,775478548,1652963605,3523358532,7510180375,16008251264,34122231512
%N A382367 Expansion of 1/( 1 - Sum_{k>=0} x^(3^k) / (1 - x^(3^k)) ).
%F A382367 a(0) = 1; a(n) = Sum_{k=1..n} A051064(k) * a(n-k).
%F A382367 G.f.: 1/(1 - Sum_{i>=1, j>=0} x^(i*3^j)).
%F A382367 G.f. A(x) satisfies A(x) = 1/( 1/A(x^3) - x/(1-x) ).
%Y A382367 Cf. A327736, A382372, A382373, A382378.
%Y A382367 Cf. A382368, A382369.
%Y A382367 Cf. A051064.
%K A382367 nonn
%O A382367 0,3
%A A382367 _Seiichi Manyama_, Mar 22 2025