cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A382372 Expansion of 1/( 1 - Sum_{k>=0} x^(4^k) / (1 - x^(4^k)) ).

This page as a plain text file.
%I A382372 #13 Mar 23 2025 10:08:05
%S A382372 1,1,2,4,9,18,37,76,158,325,670,1381,2850,5876,12117,24986,51530,
%T A382372 106262,219131,451885,931876,1921695,3962884,8172182,16852538,
%U A382372 34752996,71667001,147790386,304770689,628492615,1296066140,2672724207,5511643710,11366012289
%N A382372 Expansion of 1/( 1 - Sum_{k>=0} x^(4^k) / (1 - x^(4^k)) ).
%F A382372 a(0) = 1; a(n) = Sum_{k=1..n} A115362(k-1) * a(n-k).
%F A382372 G.f.: 1/(1 - Sum_{i>=1, j>=0} x^(i*4^j)).
%F A382372 G.f. A(x) satisfies A(x) = 1/( 1/A(x^4) - x/(1-x) ).
%Y A382372 Cf. A327736, A382367, A382373, A382378.
%Y A382372 Cf. A115362.
%K A382372 nonn
%O A382372 0,3
%A A382372 _Seiichi Manyama_, Mar 23 2025