cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A382378 Expansion of 1/( 1 - Sum_{k>=0} x^(6^k) / (1 - x^(6^k)) ).

This page as a plain text file.
%I A382378 #8 Mar 23 2025 10:07:57
%S A382378 1,1,2,4,8,16,33,66,133,268,540,1088,2194,4421,8910,17957,36190,72936,
%T A382378 146996,296252,597061,1203306,2425121,4887544,9850272,19852060,
%U A382378 40009486,80634401,162509126,327517977,660073866,1330301036,2681064864,5403370072,10889855193,21947218962
%N A382378 Expansion of 1/( 1 - Sum_{k>=0} x^(6^k) / (1 - x^(6^k)) ).
%F A382378 a(0) = 1; a(n) = Sum_{k=1..n} A373216(k) * a(n-k).
%F A382378 G.f.: 1/(1 - Sum_{i>=1, j>=0} x^(i*6^j)).
%F A382378 G.f. A(x) satisfies A(x) = 1/( 1/A(x^6) - x/(1-x) ).
%Y A382378 Cf. A327736, A382367, A382372, A382373.
%Y A382378 Cf. A122841, A373216.
%K A382378 nonn
%O A382378 0,3
%A A382378 _Seiichi Manyama_, Mar 23 2025