cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A382379 Length of the long leg in the unique primitive Pythagorean triple (x,y,z) such that (x-y+z)/2 is A000032(n) and such that its long leg and its hypotenuse are consecutive natural numbers.

This page as a plain text file.
%I A382379 #22 Jul 15 2025 21:28:10
%S A382379 4,0,12,24,84,220,612,1624,4324,11400,30012,78804,206724,541840,
%T A382379 1419612,3718264,9737284,25496940,66759012,174788904,457622004,
%U A382379 1198100200,3136716012,8212108324,21499706884,56287170720,147362061612,385799428824,1010036895924
%N A382379 Length of the long leg in the unique primitive Pythagorean triple (x,y,z) such that (x-y+z)/2 is A000032(n) and such that its long leg and its hypotenuse are consecutive natural numbers.
%H A382379 Miguel-Ángel Pérez García-Ortega, <a href="/A382379/a382379.pdf">El Libro de las Ternas Pitagóricas</a>
%F A382379 a(n) = 2*A000032(n)*(A000032(n) - 1).
%e A382379 The triangles begin:
%e A382379   n=0:      3,     4,     5;
%e A382379   n=1:      1,     0,     1;
%e A382379   n=2:      5,    12,    13;
%e A382379   n=3:      7,    24,    25;
%e A382379   ...
%e A382379 This sequence gives the middle column
%Y A382379 Cf. A000032, A022319 (short leg), A382409 (semiperimeter), A382410 (area).
%K A382379 nonn,easy
%O A382379 0,1
%A A382379 _Miguel-Ángel Pérez García-Ortega_, Mar 24 2025