This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A382381 #20 Apr 07 2025 17:46:47 %S A382381 1,2,4,8,16,25,36,62,136,320,411,1208,1295,4179,5143,6380,31370,34425, %T A382381 36094,213044,218759,306722 %N A382381 Lexicographically earliest sequence of distinct positive integers such that any two subsets with at least two terms have distinct variances. %C A382381 Numbers k such that A381856(k) = 1. %C A382381 The variance of a nonempty set X is (Sum_{x in X} (x-m)^2)/|X|, where m is the average of X and |X| is the size of X. %C A382381 a(20) > 100000. %o A382381 (Python) %o A382381 from fractions import Fraction %o A382381 from itertools import chain, combinations, count, islice %o A382381 def powerset(s): # skipping empty set %o A382381 return chain.from_iterable(combinations(s, r) for r in range(1, len(s)+1)) %o A382381 def agen(): # generator of terms %o A382381 an, alst, vset = 1, [1], set() %o A382381 while True: %o A382381 yield an %o A382381 P = list(powerset(alst)) %o A382381 Xlst, X2lst = [sum(s) for s in P], [sum(si**2 for si in s) for s in P] %o A382381 for k in count(an+1): %o A382381 ok, vnew = True, set() %o A382381 for i, s in enumerate(P): %o A382381 mu, X2 = Fraction(Xlst[i] + k, len(s)+1), X2lst[i] + k**2 %o A382381 v = Fraction(X2, len(s)+1) - mu**2 %o A382381 if v in vset or v in vnew: %o A382381 ok = False %o A382381 break %o A382381 else: %o A382381 vnew.add(v) %o A382381 if ok: %o A382381 break %o A382381 an = k %o A382381 vset |= vnew %o A382381 alst.append(an) %o A382381 print(list(islice(agen(), 13))) # _Michael S. Branicky_, Mar 31 2025 %Y A382381 Cf. A138857, A260873, A381856, A382382, A382383. %K A382381 nonn,hard,more %O A382381 1,2 %A A382381 _Pontus von Brömssen_, Mar 23 2025 %E A382381 a(20)-a(21) from _Michael S. Branicky_, Mar 31 2025 %E A382381 a(22) from _Michael S. Branicky_, Apr 07 2025