cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A382392 a(n) is the least prime number whose factorial base expansion contains the digit n.

This page as a plain text file.
%I A382392 #7 Mar 24 2025 15:14:57
%S A382392 2,2,5,19,97,601,4327,35281,322571,3265949,36288017,439084817,
%T A382392 5748019201,80951270459,1220496076831,19615115520037,334764638208037,
%U A382392 6046686277632071,115242726703104073,2311256907767808001,48658040163532800037,1072909785605898240031
%N A382392 a(n) is the least prime number whose factorial base expansion contains the digit n.
%C A382392 This sequence is well defined: a(0) = a(1) = 2, and for n > 1, (n+1)! and n*n! + 1 are coprime, so by Dirichlet's theorem on arithmetic progressions, there exists a prime number p of the form k*(n+1)! + n*n! + 1 for some k >= 0, and the factorial base expansion of this prime number contains the digit n, hence a(n) <= p.
%H A382392 <a href="/index/Fa#facbase">Index entries for sequences related to factorial base representation</a>
%F A382392 a(n) > A001563(n).
%e A382392 The initial terms, in decimal and in factorial base, are:
%e A382392   n  a(n)     fact(a(n))
%e A382392   -  -------  -----------------
%e A382392   0        2  1,0
%e A382392   1        2  1,0
%e A382392   2        5  2,1
%e A382392   3       19  3,0,1
%e A382392   4       97  4,0,0,1
%e A382392   5      601  5,0,0,0,1
%e A382392   6     4327  6,0,0,1,0,1
%e A382392   7    35281  7,0,0,0,0,0,1
%e A382392   8   322571  8,0,0,0,0,1,2,1
%e A382392   9  3265949  9,0,0,0,0,1,0,2,1
%o A382392 (PARI) a(n) = { forprime (p = n*n!, oo, my (q = p); for (r = 2, oo, if (q==0, break, q % r==n, return (p), q \= r););); }
%Y A382392 Cf. A001563, A062584, A090703.
%K A382392 nonn,base
%O A382392 0,1
%A A382392 _Rémy Sigrist_, Mar 23 2025