This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A382395 #10 Mar 24 2025 15:15:13 %S A382395 1,1,1,3,2,6,14,2,10,26,60,110,4,22,68,156,320,584,8,24,80,206,504, %T A382395 1004,1910,3380,10,34,98,282,760,1618,3334,6360,11482,2,22,70,214,540, %U A382395 1250,2718,5712,10910,20418,2,12,30,90,230,562,1228,2690,5550,11260,21164,2,4,6,10,18 %N A382395 Number of maximum sized subsets of {1..n} such that every pair of distinct elements has a different difference. %C A382395 Also the number of maximum sized subsets of {1..n} such that every pair of (not necessarily distinct) elements has a different sum. In other words, a(n) is the number of Sidon sets with A143824(n) elements which are <= n. %H A382395 Wikipedia, <a href="https://en.wikipedia.org/wiki/Sidon_sequence">Sidon sequence</a>. %H A382395 <a href="/index/Go#Golomb">Index entries for sequences related to Golomb rulers</a>. %e A382395 The a(0) = 1 set is {}. %e A382395 The a(1) = 1 set is {1}. %e A382395 The a(2) = 1 set is {1,2}. %e A382395 The a(3) = 3 sets: {1,2}, {1,3}, {2,3}. %e A382395 The a(4) = 2 sets: {1,2,4}, {1,3,4}. %e A382395 The a(5) = 6 sets: {1,2,4}, {1,2,5}, {1,3,4}, {1,4,5}, {2,3,5}, {2,4,5}. %e A382395 The a(6) = 14 sets: {1,2,4}, {1,2,5}, {1,2,6}, {1,3,4}, {1,3,6}, {1,4,5}, {1,4,6}, {1,5,6}, {2,3,5}, {2,3,6}, {2,4,5}, {2,5,6}, {3,4,6}, {3,5,6}. %e A382395 The a(7) = 2 sets: {1,2,5,7}, {1,3,6,7}. %o A382395 (PARI) %o A382395 a(n)={ %o A382395 local(best,count); %o A382395 my(recurse(k,r,b,w)= %o A382395 if(k > n, if(r>=best, if(r>best,best=r;count=0); count++), %o A382395 self()(k+1, r, b, w); %o A382395 b+=1<<k; if(!bitand(w,b<<k), self()(k+1, r+1, b, w + (b<<k))); %o A382395 ) %o A382395 ); %o A382395 recurse(1,0,0,0); %o A382395 count; %o A382395 } %Y A382395 Cf. A143823, A143824 (maximum size of set), A325879, A377410, A382396, A382398. %K A382395 nonn %O A382395 0,4 %A A382395 _Andrew Howroyd_, Mar 23 2025