This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A382398 #6 Mar 24 2025 15:15:17 %S A382398 1,1,1,1,4,2,8,22,2,14,40,102,214,4,24,92,236,564,1148,4,18,90,270, %T A382398 694,1558,2,6,24,76,252,632,1554,3282,6820,12942,6,24,84,246,664,1562, %U A382398 3442,7084,14336,27202,50520,2,26,88,294,704,1716,3708,8028,16108,31466,58320,107136,4,20,54 %N A382398 Number of maximum sized subsets of {1..n} such that every pair of distinct elements has a different sum. %e A382398 The a(1) = 1 through a(6) = 8 subsets: %e A382398 {1} {1,2} {1,2,3} {1,2,3} {1,2,3,5} {1,2,3,5} %e A382398 {1,2,4} {1,3,4,5} {1,2,3,6} %e A382398 {1,3,4} {1,2,4,6} %e A382398 {2,3,4} {1,3,4,5} %e A382398 {1,3,5,6} %e A382398 {1,4,5,6} %e A382398 {2,3,4,6} %e A382398 {2,4,5,6} %e A382398 Compare the above examples with A325878. %o A382398 (PARI) %o A382398 a(n)={ %o A382398 local(best,count); %o A382398 my(recurse(k,r,b,w)= %o A382398 if(k > n, if(r>=best, if(r>n,best=r;count=0); count++), %o A382398 self()(k+1, r, b, w); %o A382398 if(!bitand(w,b<<k), self()(k+1, r+1, b+(1<<k), w + (b<<k))); %o A382398 ) %o A382398 ); %o A382398 recurse(1,0,0,0); %o A382398 count; %o A382398 } %Y A382398 Cf. A039836 (maximum size), A196723, A325878, A382395. %K A382398 nonn %O A382398 0,5 %A A382398 _Andrew Howroyd_, Mar 23 2025