This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A382399 #12 Mar 27 2025 18:33:31 %S A382399 1,2,3,7,9,16,19,43,49,100,91,177,193,352,323,691,673,1242,1135,2129, %T A382399 2041,3634,3103,5843,5473,9326,8139,16579,14001,24796,21271,38813, %U A382399 34369,60292,49539,86451,81361,131684,110391,196717,171761,286878,236167,419337,370569,618346,501999,872415,763777,1235438,1028451 %N A382399 Number of subsets of Z_n such that every ordered pair of distinct elements has a different difference. %C A382399 Arithmetic is done modulo n. %C A382399 Also the number of subsets of Z_n such that every unordered pair of (not necessarily distinct) elements has a different sum. %H A382399 Andrew Howroyd, <a href="/A382399/b382399.txt">Table of n, a(n) for n = 0..80</a> %H A382399 Wikipedia, <a href="https://en.wikipedia.org/wiki/Sidon_sequence">Sidon sequence</a>. %H A382399 <a href="/index/Go#Golomb">Index entries for sequences related to Golomb rulers</a>. %F A382399 a(n) = n*A325681(n) + 1. %e A382399 The a(0) = 1 through a(5) = 16 subsets: %e A382399 {} {} {} {} {} {} %e A382399 {0} {0} {0} {0} {0} %e A382399 {1} {1} {1} {1} %e A382399 {2} {2} {2} %e A382399 {0,1} {3} {3} %e A382399 {0,2} {0,1} {4} %e A382399 {1,2} {0,3} {0,1} %e A382399 {1,2} {0,2} %e A382399 {2,3} {0,3} %e A382399 {0,4} %e A382399 {1,2} %e A382399 {1,3} %e A382399 {1,4} %e A382399 {2,3} %e A382399 {2,4} %e A382399 {3,4} %o A382399 (PARI) %o A382399 a(n)={ %o A382399 my(recurse(k,r,b,w)= %o A382399 if(k >= n, 1, %o A382399 b+=1<<k; %o A382399 my(t=bitand((1<<n)-1, bitor(b<<k, b<<(k-n)))); %o A382399 self()(k+1, r, b-(1<<k), w) + %o A382399 if(!bitand(w,t), self()(k+1, r+1, b, w + t)); %o A382399 )); %o A382399 recurse(0,0,0,0); %o A382399 } %Y A382399 Cf. A143823, A325679, A325681, A382400. %K A382399 nonn %O A382399 0,2 %A A382399 _Andrew Howroyd_, Mar 24 2025