This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A382402 #19 Jun 02 2025 08:29:19 %S A382402 1,2,3,4,5,6,7,8,9,11,12,15,24,26,34,35,37,48,55,62,64,66,72,73,75,76, %T A382402 78,84,88,95,96,98,99,111,112,115,126,132,134,135,136,137,144,148,155, %U A382402 162,164,168,172,173,175,176,184,188,192,195,196,198,199,212,216,228,232,244,248,264,266 %N A382402 Numbers divisible by the product of their digits (mod 10). %C A382402 Unlike A007602 and A064700, where there are no other primes besides 2, 3, 5, 7 and primes with repunits, this sequence contains other primes such as 37, 73 and 137. %C A382402 The sequence has asymptotic density 0, since it contains no numbers with digit 5 and an even digit. - _Robert Israel_, Jun 01 2025 %H A382402 Robert Israel, <a href="/A382402/b382402.txt">Table of n, a(n) for n = 1..10000</a> %p A382402 filter:= proc(n) local L,t; %p A382402 L:= convert(n,base,10); %p A382402 t:= convert(L,`*`) mod 10; %p A382402 t > 0 and n mod t = 0 %p A382402 end proc: %p A382402 select(filter, [$1..1000]); # _Robert Israel_, Jun 01 2025 %t A382402 Select[Range[300], (prod = Mod[Times @@ IntegerDigits[#], 10]) > 0 && Divisible[#, prod] &] (* _Amiram Eldar_, Mar 23 2025 *) %o A382402 (Python) %o A382402 from math import prod %o A382402 def ok(n): return (p:=prod(map(int, str(n)))%10) > 0 and n%p == 0 %o A382402 print([k for k in range(300) if ok(k)]) # _Michael S. Branicky_, Mar 23 2025 %o A382402 (PARI) isok(k) = my(p=lift(vecprod(apply(x->Mod(x, 10), digits(k))))); if (p, !(k % p)); \\ _Michel Marcus_, Mar 31 2025 %Y A382402 Cf. A007602, A064700, A371281. %K A382402 nonn,base %O A382402 1,2 %A A382402 _Enrique Navarrete_, Mar 23 2025