cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A382402 Numbers divisible by the product of their digits (mod 10).

This page as a plain text file.
%I A382402 #19 Jun 02 2025 08:29:19
%S A382402 1,2,3,4,5,6,7,8,9,11,12,15,24,26,34,35,37,48,55,62,64,66,72,73,75,76,
%T A382402 78,84,88,95,96,98,99,111,112,115,126,132,134,135,136,137,144,148,155,
%U A382402 162,164,168,172,173,175,176,184,188,192,195,196,198,199,212,216,228,232,244,248,264,266
%N A382402 Numbers divisible by the product of their digits (mod 10).
%C A382402 Unlike A007602 and A064700, where there are no other primes besides 2, 3, 5, 7 and primes with repunits, this sequence contains other primes such as 37, 73 and 137.
%C A382402 The sequence has asymptotic density 0, since it contains no numbers with digit 5 and an even digit. - _Robert Israel_, Jun 01 2025
%H A382402 Robert Israel, <a href="/A382402/b382402.txt">Table of n, a(n) for n = 1..10000</a>
%p A382402 filter:= proc(n) local L,t;
%p A382402   L:= convert(n,base,10);
%p A382402   t:= convert(L,`*`) mod 10;
%p A382402   t > 0 and n mod t = 0
%p A382402 end proc:
%p A382402 select(filter, [$1..1000]); # _Robert Israel_, Jun 01 2025
%t A382402 Select[Range[300], (prod = Mod[Times @@ IntegerDigits[#], 10]) > 0 && Divisible[#, prod] &] (* _Amiram Eldar_, Mar 23 2025 *)
%o A382402 (Python)
%o A382402 from math import prod
%o A382402 def ok(n): return (p:=prod(map(int, str(n)))%10) > 0 and n%p == 0
%o A382402 print([k for k in range(300) if ok(k)]) # _Michael S. Branicky_, Mar 23 2025
%o A382402 (PARI) isok(k) = my(p=lift(vecprod(apply(x->Mod(x, 10), digits(k))))); if (p, !(k % p)); \\ _Michel Marcus_, Mar 31 2025
%Y A382402 Cf. A007602, A064700, A371281.
%K A382402 nonn,base
%O A382402 1,2
%A A382402 _Enrique Navarrete_, Mar 23 2025