A382410 Area of the unique primitive Pythagorean triple (a,b,c) such that (a-b+c)/2 is A000032(n) and such that its long leg and its hypotenuse are consecutive natural numbers.
6, 0, 30, 84, 546, 2310, 10710, 46284, 201066, 860700, 3676470, 15642594, 66461766, 282027720, 1196023110, 5069852964, 21485317146, 91036824270, 385700191830, 1634014069044, 6922219243506, 29324101445100, 124221795865230, 526219583239434, 2229121859293446, 9442763903572560
Offset: 0
Examples
For n=3, the short leg is A382379(2,1) = 5 and the long leg is A382379(2,2) = 12 so the area is then a(3) = (5 * 12)/2 = 30.
References
- Miguel Ángel Pérez García-Ortega, José Manuel Sánchez Muñoz and José Miguel Blanco Casado, El Libro de las Ternas Pitagóricas, Preprint 2025.
Links
- Miguel-Ángel Pérez García-Ortega, El Libro de las Ternas Pitagóricas
- Index entries for linear recurrences with constant coefficients, signature (6,-2,-29,16,40,-11,-14,2,1).
Programs
-
Mathematica
a=Table[LucasL[n],{n,0,30}];Apply[Join,Map[{#(#-1)(2#-1)}&,a]]