cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A382422 The product of exponents in the prime factorization of the biquadratefree numbers.

This page as a plain text file.
%I A382422 #8 Mar 25 2025 10:11:51
%S A382422 1,1,1,2,1,1,1,3,2,1,1,2,1,1,1,1,2,1,2,1,1,1,3,2,1,3,2,1,1,1,1,1,1,4,
%T A382422 1,1,1,3,1,1,1,2,2,1,1,2,2,1,2,1,3,1,3,1,1,1,2,1,1,2,1,1,1,2,1,1,1,6,
%U A382422 1,1,2,2,1,1,1,1,1,2,1,1,1,3,1,2,1,2,1
%N A382422 The product of exponents in the prime factorization of the biquadratefree numbers.
%C A382422 Differs from A375766 and A375768 at n = 1, 31, 34, 35, 38, 39, ... .
%C A382422 All the terms are 3-smooth numbers (A003586).
%H A382422 Amiram Eldar, <a href="/A382422/b382422.txt">Table of n, a(n) for n = 1..10000</a>
%F A382422 a(n) = A005361(A046100(n)).
%F A382422 a(n) = 2^A382423(n) * 3^A382424(n).
%F A382422 Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = zeta(4) * Product_{p prime} (1 + 1/p^2 + 1/p^3 - 3/p^4) = 1.57226906210272200398... .
%F A382422 In general, the asymptotic mean of the product of exponents in the prime factorization of the k-free numbers (numbers that are not divisible by a k-th power other than 1), for k >= 2, is zeta(k) * Product_{p prime} (1 + 1/p^2 + 1/p^3 + ... + 1/p^(k-1) - (k-1)/p^k). For k = 2 (squarefree numbers), the mean is 1 since the sequence contains only 1's. The limit when k->oo is zeta(2)*zeta(3)/zeta(6) (A082695).
%t A382422 s[n_] := Times @@ FactorInteger[n][[;; , 2]]; biqFreeQ[n_] := Max[FactorInteger[n][[;; , 2]]] < 4; s /@ Select[Range[100], biqFreeQ]
%o A382422 (PARI) list(kmax) = {my(e); print1(1, ", "); for(k = 2, kmax, e = factor(k)[, 2]; if(vecmax(e) < 4, print1(vecprod(e), ", "))); }
%Y A382422 Cf. A003586, A005361, A013662, A046100, A082695, A382423, A382424.
%Y A382422 Cf. A375766, A375768.
%K A382422 nonn,easy
%O A382422 1,4
%A A382422 _Amiram Eldar_, Mar 25 2025