cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A382423 The number of exponents in the prime factorization of n-th biquadratefree number that are equal to 2.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0
Offset: 1

Views

Author

Amiram Eldar, Mar 25 2025

Keywords

Crossrefs

Programs

  • Mathematica
    f[k_] := Module[{e = If[k == 1, {}, FactorInteger[k][[;; , 2]]]}, If[AllTrue[e, # < 4 &], Count[e, 2], Nothing]]; Array[f, 150]
  • PARI
    list(kmax) = {my(e, is); for(k = 1, kmax, e = factor(k)[, 2]; is = 1; for(i = 1, #e, if(e[i] > 3, is = 0; break)); if(is, print1(#select(x -> x == 2, e), ", "))); }

Formula

a(n) = A369427(A046100(n)).
a(n) = A382425(n) - A382424(n).
Sum_{A046100(k) <= x} a(k) = c * x + O(sqrt(x)/log(x)), where c = (1/zeta(4)) * Sum_{p prime} (p*(p-1)/(p^4-1)) = 0.26498866091940182979... (Das et al., 2025).
Sum_{k=1..n} a(k) ~ c * n, where c = Sum_{p prime} (p*(p-1)/(p^4-1)) = 0.28680338438307129... - Vaclav Kotesovec, Mar 25 2025 (according to the above formula)