This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A382427 #13 Apr 27 2025 09:09:21 %S A382427 1,1,2,3,4,7,11,14,19,28,39,50,70,91,120,161,203,260,338,426,556,695, %T A382427 863,1082,1360,1685 %N A382427 Number of integer partitions of n that can be partitioned into constant blocks with distinct sums. %C A382427 Conjecture: Also the number of integer partitions of n having a permutation with all distinct run-sums. %e A382427 The partition (3,2,2,2,1) can be partitioned as {{1},{2},{3},{2,2}} or {{1},{3},{2,2,2}}, so is counted under a(10). %e A382427 The a(1) = 1 through a(7) = 14 partitions: %e A382427 (1) (2) (3) (4) (5) (6) (7) %e A382427 (11) (21) (22) (32) (33) (43) %e A382427 (111) (31) (41) (42) (52) %e A382427 (1111) (221) (51) (61) %e A382427 (311) (222) (322) %e A382427 (2111) (321) (331) %e A382427 (11111) (411) (421) %e A382427 (2211) (511) %e A382427 (3111) (2221) %e A382427 (21111) (4111) %e A382427 (111111) (22111) %e A382427 (31111) %e A382427 (211111) %e A382427 (1111111) %t A382427 hwt[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]*k]]; %t A382427 pfacs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#,d]&)/@Select[pfacs[n/d],Min@@#>=d&],{d,Select[Rest[Divisors[n]],PrimePowerQ]}]]; %t A382427 Table[Length[Select[IntegerPartitions[n],Select[pfacs[Times@@Prime/@#],UnsameQ@@hwt/@#&]!={}&]],{n,0,10}] %Y A382427 Twice-partitions of this type (constant with distinct) are counted by A279786. %Y A382427 Multiset partitions of this type are ranked by A326535 /\ A355743. %Y A382427 The complement is counted by A381717, ranks A381636, zeros of A381635. %Y A382427 For strict instead of constant blocks we have A381992, ranks A382075. %Y A382427 For a unique choice we have A382301, ranks A381991. %Y A382427 Normal multiset partitions of this type are counted by A382203, sets A381718. %Y A382427 A000041 counts integer partitions, strict A000009. %Y A382427 A000688 counts factorizations into prime powers, see A381455, A381453. %Y A382427 A001055 counts factorizations, strict A045778, see A317141, A300383, A265947. %Y A382427 A050361 counts factorizations into distinct prime powers. %Y A382427 Cf. A006171, A047966, A279784, A295935, A300385, A353864, A381633, A381716, A381990, A381993, A382079, A382876. %K A382427 nonn,more %O A382427 0,3 %A A382427 _Gus Wiseman_, Mar 26 2025