A382429 Number of normal multiset partitions of weight n into sets with a common sum.
1, 1, 2, 3, 5, 7, 13, 26, 57, 113, 283, 854, 2401, 6998, 24072, 85061, 308956, 1190518, 4770078, 19949106, 87059592
Offset: 0
Examples
The a(1) = 1 through a(6) = 13 partitions: {1} {12} {123} {1234} {12345} {123456} {1}{1} {3}{12} {12}{12} {24}{123} {123}{123} {1}{1}{1} {14}{23} {34}{124} {125}{134} {3}{3}{12} {3}{12}{12} {135}{234} {1}{1}{1}{1} {5}{14}{23} {145}{235} {3}{3}{3}{12} {12}{12}{12} {1}{1}{1}{1}{1} {14}{14}{23} {14}{23}{23} {16}{25}{34} {3}{3}{12}{12} {5}{5}{14}{23} {3}{3}{3}{3}{12} {1}{1}{1}{1}{1}{1} The corresponding factorizations: 2 6 30 210 2310 30030 2*2 5*6 6*6 21*30 30*30 2*2*2 14*15 35*42 6*6*6 5*5*6 5*6*6 66*70 2*2*2*2 5*5*5*6 110*105 11*14*15 154*165 2*2*2*2*2 5*5*6*6 14*14*15 14*15*15 26*33*35 5*5*5*5*6 11*11*14*15 2*2*2*2*2*2
Crossrefs
Without the common sum we have A116540 (normal set multipartitions).
Twice-partitions of this type are counted by A279788.
For common sizes instead of sums we have A317583.
For a common length instead of sum we have A331638.
For distinct instead of equal block-sums we have A381718.
Factorizations of this type are counted by A382080.
For distinct block-sums and constant blocks we have A382203.
For constant instead of strict blocks we have A382204.
Programs
-
Mathematica
allnorm[n_Integer]:=Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]; sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; mps[mset_]:=Union[Sort[Sort/@(#/.x_Integer:>mset[[x]])]&/@sps[Range[Length[mset]]]]; Table[Length[Join@@(Select[mps[#],SameQ@@Total/@#&&And@@UnsameQ@@@#&]&/@allnorm[n])],{n,0,5}]
Extensions
a(11) from Robert Price, Mar 30 2025
a(12)-a(20) from Christian Sievers, Apr 06 2025
Comments