This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A382436 #30 Jul 09 2025 05:08:47 %S A382436 1,1,1,1,3,1,1,6,6,1,1,9,17,9,1,1,12,36,36,12,1,1,15,64,101,64,15,1,1, %T A382436 18,101,227,227,101,18,1,1,21,147,440,627,440,147,21,1,1,24,202,767, %U A382436 1459,1459,767,202,24,1,1,27,266,1235,2994,3999,2994,1235,266,27,1 %N A382436 Triangle read by rows, defined by the two-variable g.f. 1/(1 - (y + 1)*x - y*x^2 - (y^2 + y)*x^3). %C A382436 The original definition was "Decomposition of A077938". %C A382436 Every row is symmetric. %F A382436 G.f. 1/(1 - (y + 1)*x - y*x^2 - (y^2 + y)*x^3). %F A382436 Sum_{k=0..n} (-1)^k * T(n,k) = A056594(n). - _Alois P. Heinz_, Mar 25 2025 %e A382436 Triangle begins: %e A382436 1; %e A382436 1, 1; %e A382436 1, 3, 1; %e A382436 1, 6, 6, 1; %e A382436 1, 9, 17, 9, 1; %e A382436 1, 12, 36, 36, 12, 1; %e A382436 1, 15, 64, 101, 64, 15, 1; %e A382436 1, 18, 101, 227, 227, 101, 18, 1; %e A382436 1, 21, 147, 440, 627, 440, 147, 21, 1; %e A382436 1, 24, 202, 767, 1459, 1459, 767, 202, 24, 1; %e A382436 1, 27, 266, 1235, 2994, 3999, 2994, 1235, 266, 27, 1; %e A382436 ... %o A382436 (Sage) %o A382436 y = polygen(QQ, 'y') %o A382436 x = y.parent()[['x']].gen() %o A382436 inverse = 1 + (-y - 1)*x - y*x^2 + (-y^2 - y)*x^3 %o A382436 gf = 1 / inverse %o A382436 [list(u) for u in list(gf.O(11))] %Y A382436 Similar to A008288, A103450, and A382444. %Y A382436 Row sums are A077938. %Y A382436 T(2n, n) gives A339565. %Y A382436 Cf. A056594. %K A382436 nonn,tabl %O A382436 0,5 %A A382436 _F. Chapoton_, Mar 25 2025