A382438 Numbers k in A024619 such that all residues r (mod k) in row k of A381801 are such that rad(r) divides k, where rad = A007947.
6, 12, 14, 24, 39, 62, 155, 254, 3279, 5219, 16382, 19607, 70643, 97655, 208919, 262142, 363023, 402233, 712979, 1040603, 1048574, 1508597, 2265383, 2391483, 4685519, 5207819, 6728903, 21243689, 25239899, 56328959, 61035155, 67977559, 150508643
Offset: 1
Keywords
Examples
Table of a(n) for n = 1..10, showing prime decomposition (facs(a(n))), row a(n) of A381801: Row a(n) of A381801 n a(n) facs(a(n)) k (mod a(n)) such that rad(k) | a(n). ------------------------------------------------------------- 1 6 2 * 3 {0, 1, 2, 3, 4} 2 12 2^2 * 3 {0, 1, 2, 3, 4, 6, 8, 9} 3 14 2 * 7 {0, 1, 2, 4, 7, 8} 4 24 2^3 * 3 {0, 1, 2, 3, 4, 6, 8, 9, 12, 16, 18} 5 39 3 * 13 {0, 1, 3, 9, 13, 27} 6 62 2 * 31 {0, 1, 2, 4, 8, 16, 31, 32} 7 155 5 * 31 {0, 1, 5, 25, 31, 125} 8 254 2 * 127 {0, 1, 2, 4, 8, 16, 32, 64, 127, 128} 9 3279 3 * 1093 {0, 1, 3, 9, 27, 81, 243, 729, 1093, 2187} 10 5219 17 * 307 {0, 1, 17, 289, 307, 4913} Let b = A381750. a(1) = 6 since T(6) (mod 6) = {1,2,4} X {1,3} = {{1,2,4},{3,0,0}}; all residues r (mod 6) in T(6) (i.e., in row 6 of A381801) are such that rad(r) | 6. a(2) = 12 since T(12) (mod 12) = {1,2,4,8} X {1,3,9} = {{1,2,4,8},{3,6,0,0},{9,6,0,0}}; all residues r (mod 12) in T(12) are such that rad(r) | 12. a(3) = 14 since T(14) (mod 14) = {1,2,4,8} X {1,7} = {{1,2,4,8},{7,0,0,0}}; all residues r (mod 14) in T(14) are such that rad(r) | 14. a(4) = 24 since T(24) (mod 24) = {1,2,4,8,16} X {1,3,9} = {{1,2,4,8,16},{3,6,12,0,0},{9,18,0,0,0}}; all residues r (mod 24) in T(24) are such that rad(r) | 24. b(6) = 56 is not in the sequence since 49*2 = 98 = 42 (mod 56), rad(42) does not divide 56. b(8) = 112 is not in the sequence since 49*4 = 196 = 84 (mod 112), rad(84) does not divide 112, etc.
Links
- Michael De Vlieger, Efficient Mathematica code for this sequence (2025).
Comments