This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A382439 #27 Mar 27 2025 10:02:54 %S A382439 1,1,1,1,2,1,1,5,5,1,1,7,12,7,1,1,9,24,24,9,1,1,11,40,60,40,11,1,1,13, %T A382439 60,124,124,60,13,1,1,15,84,224,308,224,84,15,1,1,17,112,368,656,656, %U A382439 368,112,17,1,1,19,144,564,1248,1620,1248,564,144,19,1 %N A382439 Triangle read by rows: defined by the two-variable g.f. (x^3*y^2 + x^3*y - x^2*y + 1) / (1 - x^2*y - x*y - x). %C A382439 The alternating sum of every row n > 0 vanishes. Every row is symmetric. %e A382439 [0] [1] %e A382439 [1] [1, 1] %e A382439 [2] [1, 2, 1] %e A382439 [3] [1, 5, 5, 1] %e A382439 [4] [1, 7, 12, 7, 1] %e A382439 [5] [1, 9, 24, 24, 9, 1] %e A382439 [6] [1, 11, 40, 60, 40, 11, 1] %e A382439 [7] [1, 13, 60, 124, 124, 60, 13, 1] %e A382439 [8] [1, 15, 84, 224, 308, 224, 84, 15, 1] %e A382439 [9] [1, 17, 112, 368, 656, 656, 368, 112, 17, 1] %o A382439 (Sage) %o A382439 y = polygen(QQ, 'y') %o A382439 x = y.parent()[['x']].gen() %o A382439 gf = (x^3*y^2 + x^3*y - x^2*y + 1)/(1 - x^2*y - x*y - x) %o A382439 [list(u) for u in list(gf.O(10))] %Y A382439 Similar to A008288 and A382436. Row sums are A245990. %K A382439 nonn,tabl %O A382439 0,5 %A A382439 _F. Chapoton_, Mar 25 2025