This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A382441 #13 Mar 28 2025 08:03:26 %S A382441 1,2,5,7,8,9,10,16,20,32,40,50,51,53,64,83,93,100,117,118,126,160,186, %T A382441 200,207,224,250,288,311,320,352,372,391,400,448,480,500,625,640,713, %U A382441 800,960,979,1000,1011,1039,1043,1097,1099,1173,1200,1250,1359,1426 %N A382441 Lexicographically earliest sequence of positive integers such that for any n > 1, a(n) does not divide any of the positive numbers whose decimal expansion appears as a contiguous subword in the concatenation of the previous terms. %C A382441 This sequence contains all powers of 10. %H A382441 Rémy Sigrist, <a href="/A382441/b382441.txt">Table of n, a(n) for n = 1..1000</a> %H A382441 Rémy Sigrist, <a href="/A382441/a382441.txt">C++ program</a> %e A382441 a(1) = 1. %e A382441 a(2) must not divide 1; we can take a(2) = 2. %e A382441 a(3) must not divide 1, 2 or 12; we can take a(3) = 5. %o A382441 (Python) %o A382441 from itertools import count, islice %o A382441 def agen(): # generator of terms %o A382441 an, s, d = 1, "1", [1] %o A382441 while True: %o A382441 yield an %o A382441 an = next(k for k in count(an+1) if not any(di%k == 0 for di in d)) %o A382441 for di in str(an): %o A382441 s += di %o A382441 d += [si for i in range(len(s)) if (si:=int(s[i:])) > an] %o A382441 d = sorted(set(d)) %o A382441 print(list(islice(agen(), 54))) # _Michael S. Branicky_, Mar 26 2025 %o A382441 (C++) // See Links section. %Y A382441 Cf. A048991, A382442 (binary variant), A382445. %K A382441 nonn,base %O A382441 1,2 %A A382441 _Rémy Sigrist_, Mar 25 2025