A382458 Number of normal multisets of size n that can be partitioned into a set of sets in exactly one way.
1, 1, 0, 2, 1, 3, 0, 7, 3, 11, 18, 9
Offset: 0
Examples
The normal multiset {1,2,2,2,2,3,3,4} has three multiset partitions into a set of sets: {{2},{1,2},{2,3},{2,3,4}} {{2},{2,3},{2,4},{1,2,3}} {{2},{3},{1,2},{2,3},{2,4}} so is not counted under a(8). The a(1) = 1 through a(7) = 7 normal multisets: {1} . {1,1,2} {1,1,2,2} {1,1,1,2,3} . {1,1,1,1,2,3,4} {1,2,2} {1,2,2,2,3} {1,1,1,2,2,2,3} {1,2,3,3,3} {1,1,1,2,3,3,3} {1,2,2,2,2,3,4} {1,2,2,2,3,3,3} {1,2,3,3,3,3,4} {1,2,3,4,4,4,4}
Crossrefs
Programs
-
Mathematica
allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]] /@ Subsets[Range[n-1]+1]]; sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]] /@ Cases[Subsets[set],{i,_}]; mps[mset_]:=Union[Sort[Sort/@(#/.x_Integer:>mset[[x]])]& /@ sps[Range[Length[mset]]]]; Table[Length[Select[allnorm[n], Length[Select[mps[#], UnsameQ@@#&&And@@UnsameQ@@@#&]]==1&]], {n,0,5}]
Comments