This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A382459 #7 Apr 03 2025 20:34:46 %S A382459 1,1,0,2,1,3,2,7,4,10,19 %N A382459 Number of normal multisets of size n that can be partitioned into a set of sets with distinct sums in exactly one way. %C A382459 We call a multiset or multiset partition normal iff it covers an initial interval of positive integers. The size of a multiset is the number of elements, counting multiplicity. %e A382459 The normal multiset {1,2,2,2,2,3,3,4} has only one multiset partition into a set of sets with distinct sums: {{2},{1,2},{2,3},{2,3,4}}, so is counted under a(8). %e A382459 The a(1) = 1 through a(7) = 7 multisets: %e A382459 {1} . {112} {1122} {11123} {111233} {1111234} %e A382459 {122} {12223} {122233} {1112223} %e A382459 {12333} {1112333} %e A382459 {1222234} %e A382459 {1222333} %e A382459 {1233334} %e A382459 {1234444} %t A382459 allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]]; %t A382459 sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}]; %t A382459 mps[mset_]:=Union[Sort[Sort/@(#/.x_Integer:>mset[[x]])]&/@sps[Range[Length[mset]]]]; %t A382459 Table[Length[Select[allnorm[n],Length[Select[mps[#],UnsameQ@@Total/@#&&And@@UnsameQ@@@#&]]==1&]],{n,0,5}] %Y A382459 Twice-partitions of this type are counted by A279785, A270995, A358914. %Y A382459 Factorizations of this type are counted by A381633, A050320, A050326. %Y A382459 Normal multiset partitions of this type are A381718, A116540, A116539. %Y A382459 Multiset partitions of this type are ranked by A382201, A302478, A302494. %Y A382459 For at least one choice: A382216 (strict A382214), complement A382202 (strict A292432). %Y A382459 For the strong case see: A382430 (strict A292444), complement A382523 (strict A381996). %Y A382459 Without distinct sums we have A382458. %Y A382459 For integer partitions we have A382460, ranks A381870, strict A382079, ranks A293511. %Y A382459 Set multipartitions: A089259, A296119, A318360. %Y A382459 Normal multiset partitions: A034691, A035310, A255906. %Y A382459 Set systems: A050342, A296120, A318361. %Y A382459 Partitions: A382077 (A382200), A381992 (A382075), A382078 (A293243), A381990 (A381806). %Y A382459 Cf. A000110, A000670, A007716, A255903, A275780, A317532, A321469, A326519, A381078, A381441, A382428. %K A382459 nonn,more %O A382459 0,4 %A A382459 _Gus Wiseman_, Apr 01 2025