This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A382460 #7 Mar 31 2025 21:55:50 %S A382460 1,1,1,1,2,3,3,4,6,5,10,10,13,15,22,20,32,32,43,49,65,64,92,96,121, %T A382460 140,173,192 %N A382460 Number of integer partitions of n that can be partitioned into sets with distinct sums in exactly one way. %e A382460 The partition y = (3,3,2,1,1,1) has 2 partitions into sets: {{1},{3},{1,2},{1,3}} and {{1},{1,3},{1,2,3}}, but only the latter has distinct sums, so y is counted under a(11) %e A382460 The a(1) = 1 through a(10) = 10 partitions (A=10): %e A382460 1 2 3 4 5 6 7 8 9 A %e A382460 211 221 411 322 332 441 433 %e A382460 311 2211 331 422 522 442 %e A382460 511 611 711 622 %e A382460 3311 42111 811 %e A382460 32111 3322 %e A382460 4411 %e A382460 32221 %e A382460 43111 %e A382460 52111 %t A382460 hwt[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]*k]]; %t A382460 ssfacs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#,d]&) /@ Select[ssfacs[n/d],Min@@#>d&],{d,Select[Rest[Divisors[n]],SquareFreeQ]}]]; %t A382460 Table[Length[Select[IntegerPartitions[n], Length[Select[ssfacs[Times@@Prime/@#],UnsameQ@@hwt/@#&]]==1&]],{n,0,15}] %Y A382460 Twice-partitions of this type are counted by A279785. %Y A382460 Multiset partitions of this type are counted by A381633. %Y A382460 Normal multiset partitions of this type are counted by A381718. %Y A382460 These partitions are ranked by A381870. %Y A382460 For no choices we have A381990, ranks A381806, see A382078, ranks A293243. %Y A382460 For at least one choice we have A381992, ranks A382075, see A382077, ranks A382200. %Y A382460 For distinct blocks instead of block-sums we have A382079, ranks A293511. %Y A382460 MM-numbers of these multiset partitions are A382201, see A302478. %Y A382460 For constant instead of strict blocks we have A382301, ranks A381991. %Y A382460 Set systems: A050320, A050326, A050342, A116539, A296120, A318361. %Y A382460 Set multipartitions: A089259, A116540, A270995, A296119, A318360. %Y A382460 A000041 counts integer partitions, strict A000009. %Y A382460 A265947 counts refinement-ordered pairs of integer partitions. %Y A382460 Cf. A002846, A047966, A213427, A299202, A317142, A358914, A381441, A381454, A381636. %K A382460 nonn,more %O A382460 0,5 %A A382460 _Gus Wiseman_, Mar 29 2025