cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A382476 Numbers k where record low values occur for abs(A129132(k)/k - c) = abs(A380264(k)/A380265(k) - c), where c = A033150 is Niven's constant.

Original entry on oeis.org

1, 2, 3, 4, 8, 9, 16, 18, 20, 24, 25, 27, 28, 32, 56, 64, 81, 128, 162, 176, 192, 256, 352, 384, 736, 768, 896, 1026, 1029, 1056, 1280, 1792, 1863, 1864, 1928, 2052, 2058, 2064, 2080, 2304, 2432, 2560, 2944, 3776, 4376, 4384, 4480, 4482, 5104, 5120, 5121, 5125
Offset: 1

Views

Author

Amiram Eldar, Mar 28 2025

Keywords

Comments

First differs from A382475 at n = 72: a(72) = 39937 while A382475(72) = 39936.
Since lim_{k->oo} A129132(k)/k = c, this sequence is infinite if Niven's constant is irrational.

Crossrefs

Programs

  • Mathematica
    f[k_] := Max[FactorInteger[k][[;; , 2]]]; f[1] = 0; seq[lim_] := Module[{Niven = 1 + NSum[1 - 1/Zeta[k], {k, 2, Infinity}, NSumTerms -> 100, WorkingPrecision -> 50], dm = 2, d, s = {}, sum = 0}, Do[sum += f[k]; d = Abs[sum/k - Niven]; If[d < dm, dm = d; AppendTo[s, k]], {k, 1, lim}]; s]; seq[10^4]
  • PARI
    default(realprecision, 120);
    f(k) = if(k == 1, 0, vecmax(factor(k)[, 2]));
    list(lim) = {my(niven = 1 + suminf(k = 2, 1-1/zeta(k)), dm = 2, d, s = List(), sm = 0); for(k = 1, lim, sm += f(k); d = abs(sm/k - niven); if(d < dm, dm = d; listput(s, k))); Vec(s);}