This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A382488 #7 Mar 29 2025 04:24:09 %S A382488 1,2,2,2,1,4,1,2,2,2,1,4,1,2,2,2,1,4,1,2,2,2,1,4,1,2,2,2,1,4,1,2,2,2, %T A382488 1,4,1,2,2,2,1,4,1,2,2,2,1,4,1,2,2,2,1,4,1,2,2,2,1,4,1,2,2,2,1,4,1,2, %U A382488 2,2,1,4,1,2,2,2,1,4,1,2,2,2,1,4,1,2,2 %N A382488 The number of unitary 3-smooth divisors of n. %C A382488 Period 6: repeat [1, 2, 2, 2, 1, 4]. %C A382488 Decimal expansion of 407380/333333. %C A382488 Continued fraction expansion of 10/(6 + sqrt(66)) (with offset 0). %H A382488 Amiram Eldar, <a href="/A382488/b382488.txt">Table of n, a(n) for n = 1..1000</a> %H A382488 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,0,0,1). %F A382488 Multiplicative with a(p^e) = 2 if p <= 3, and 1 otherwise. %F A382488 a(n) = A034444(A065331(n)). %F A382488 a(n) = A034444(n) if and only if n is 3-smooth (A003586). %F A382488 a(n) = A072078(n) if and only if n is squarefree (A005117). %F A382488 a(n) = abs(A181982(n+9)). %F A382488 Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2. %F A382488 G.f.: -(4*x^6 + x^5 + 2*x^4 + 2*x^3 +2*x^2 + x)/(x^6 - 1). %F A382488 Dirichlet g.f.: (1 + 1/2^s) * (1 + 1/3^s) * zeta(s). %t A382488 Table[{1, 2, 2, 2, 1, 4}, {12}] // Flatten %o A382488 (PARI) a(n) = [1, 2, 2, 2, 1, 4][(n-1) % 6 + 1]; %Y A382488 Cf. A005117, A003586, A034444, A065331, A072078, A181982, A382487. %Y A382488 The number of unitary prime(k)-smooth divisors of n: A134451 (k = 1), this sequence (k = 2), A382489 (k = 3). %K A382488 nonn,easy,mult %O A382488 1,2 %A A382488 _Amiram Eldar_, Mar 29 2025