cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A385046 The sum of the unitary divisors of n that are 3-smooth numbers (A003586).

Original entry on oeis.org

1, 3, 4, 5, 1, 12, 1, 9, 10, 3, 1, 20, 1, 3, 4, 17, 1, 30, 1, 5, 4, 3, 1, 36, 1, 3, 28, 5, 1, 12, 1, 33, 4, 3, 1, 50, 1, 3, 4, 9, 1, 12, 1, 5, 10, 3, 1, 68, 1, 3, 4, 5, 1, 84, 1, 9, 4, 3, 1, 20, 1, 3, 10, 65, 1, 12, 1, 5, 4, 3, 1, 90, 1, 3, 4, 5, 1, 12, 1, 17
Offset: 1

Views

Author

Amiram Eldar, Jun 16 2025

Keywords

Comments

The number of these divisors is A382488(n), and the largest of them is A065331(n).

Crossrefs

The unitary analog of A072079.
The sum of unitary divisors of n that are: A092261 (squarefree), A192066 (odd), A358346 (exponentially odd), A358347 (square), A360720 (powerful), A371242 (cubefree), A380396 (cube), A383763 (exponentially squarefree), A385043 (exponentially 2^n), A385045 (5-rough), this sequence (3-smooth), A385047 (power of 2), A385048 (cubefull), A385049 (biquadratefree).

Programs

  • Mathematica
    f[n_, p_] := If[Divisible[n, p], p^IntegerExponent[n, p] + 1, 1]; a[n_] := f[n, 2]*f[n, 3]; Array[a, 100]
  • PARI
    a(n) = if(n%2, 1, 2^valuation(n, 2)+1) * if(!(n%3), 3^valuation(n, 3)+1, 1);

Formula

Multiplicative with a(p^e) = p^e + 1 if p <= 3, and 1 if p >= 5.
a(n) = A034448(n)/A385045(n).
a(n) <= A034448(n), with equality if and only if n 3-smooth.
a(n) <= A072079(n).
Dirichlet g.f.: zeta(s) * ((1-1/2^(2*s-1))/(1-1/2^(s-1))) * ((1-1/3^(2*s-1))/(1-1/3^(s-1))).
Sum_{k=1..n} a(k) ~ (n/(6*log(2)*log(3))) * (log(n)^2 + c1*log(n) + c2), where c1 = 2*gamma - 2 + 7*log(2) + 5*log(3) - 2*log(6) = 5.916004..., c2 = 2 - 5*log(2) - 11*log(2)^2/6 - 3*log(3) - 5*log(3)^2/6 + 15*log(2)*log(3)/2 + (5*log(2) + 3*log(3) - 2)*gamma - 2*gamma_1 = 1.957142..., gamma is Euler's constant (A001620), and gamma_1 is the 1st Stieltjes constant (A082633).

A385042 The number of unitary divisors of n whose exponents in their prime factorizations are all powers of 2 (A138302).

Original entry on oeis.org

1, 2, 2, 2, 2, 4, 2, 1, 2, 4, 2, 4, 2, 4, 4, 2, 2, 4, 2, 4, 4, 4, 2, 2, 2, 4, 1, 4, 2, 8, 2, 1, 4, 4, 4, 4, 2, 4, 4, 2, 2, 8, 2, 4, 4, 4, 2, 4, 2, 4, 4, 4, 2, 2, 4, 2, 4, 4, 2, 8, 2, 4, 4, 1, 4, 8, 2, 4, 4, 8, 2, 2, 2, 4, 4, 4, 4, 8, 2, 4, 2, 4, 2, 8, 4, 4, 4
Offset: 1

Views

Author

Amiram Eldar, Jun 16 2025

Keywords

Comments

First differs from A367515 at n = 128.
The sum of these divisors is A385043(n), and the largest of them is A367168(n).

Crossrefs

The unitary analog of A353898.
The number of unitary divisors of n that are: A000034 (power of 2), A055076 (exponentially odd), A056624 (square), A056671 (squarefree), A068068 (odd), A323308 (powerful), A365498 (cubefree), A365499 (biquadratefree), A368248 (cubefull), A380395 (cube), A382488 (3-smooth), this sequence (exponentially 2^n), A385044 (5-rough).

Programs

  • Mathematica
    f[p_, e_] := Boole[e == 2^IntegerExponent[e, 2]] + 1; a[ 1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> (x == 1<
    				

Formula

Multiplicative with a(p^e) = A209229(e) + 1.
a(n) <= A034444(n), with equality if and only if n is in A138302.
a(n) <= A353898(n), with equality if and only if n is squarefree (A005117).

A385044 The number of unitary divisors of n that are 5-rough numbers (A007310).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 1, 1, 2, 2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 4, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 4, 2, 2, 2, 2, 2, 2, 2, 2, 1, 4, 2, 2, 2, 2, 4, 2, 1, 2, 2, 2, 2, 4, 2, 2, 2, 1, 2, 2, 2, 4, 2, 2
Offset: 1

Views

Author

Amiram Eldar, Jun 16 2025

Keywords

Comments

The sum of these divisors is A385045(n), and the largest of them is A065330(n).

Crossrefs

The unitary analog of A035218.
The number of unitary divisors of n that are: A000034 (power of 2), A055076 (exponentially odd), A056624 (square), A056671 (squarefree), A068068 (odd), A323308 (powerful), A365498 (cubefree), A365499 (biquadratefree), A368248 (cubefull), A380395 (cube), A382488 (3-smooth), A385042 (exponentially 2^n), this sequence (5-rough).

Programs

  • Mathematica
    f[p_, e_] := If[p <= 3, 1, 2]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> if(x <= 3, 1, 2), factor(n)[, 1]));

Formula

Multiplicative with a(p^e) = 1 if p <= 3, and 2 if p >= 5.
a(n) = A034444(n)/A382488(n).
a(n) <= A034444(n), with equality if and only if n is 5-rough.
a(n) <= A035218(n).
Dirichlet g.f.: (zeta(s)^2/zeta(2*s)) * (1/((1+1/2^s)*(1+1/3^s))).
Sum_{k=1..n} a(k) ~ (n / (2 * zeta(2))) *(log(n) + 2*gamma - 1 + log(2)/3 + log(3)/4 - 2*zeta'(2)/zeta(2)), where gamma is Euler's constant (A001620).

A382489 The number of unitary 5-smooth divisors of n.

Original entry on oeis.org

1, 2, 2, 2, 2, 4, 1, 2, 2, 4, 1, 4, 1, 2, 4, 2, 1, 4, 1, 4, 2, 2, 1, 4, 2, 2, 2, 2, 1, 8, 1, 2, 2, 2, 2, 4, 1, 2, 2, 4, 1, 4, 1, 2, 4, 2, 1, 4, 1, 4, 2, 2, 1, 4, 2, 2, 2, 2, 1, 8, 1, 2, 2, 2, 2, 4, 1, 2, 2, 4, 1, 4, 1, 2, 4, 2, 1, 4, 1, 4, 2, 2, 1, 4, 2, 2, 2
Offset: 1

Views

Author

Amiram Eldar, Mar 29 2025

Keywords

Comments

Period 30: repeat [1, 2, 2, 2, 2, 4, 1, 2, 2, 4, 1, 4, 1, 2, 4, 2, 1, 4, 1, 4, 2, 2, 1, 4, 2, 2, 2, 2, 1, 8].
In general, the sequence of the number of unitary prime(k)-smooth divisors of n, for k >= 1, is periodic with period A002110(k).
Decimal expansion of 135804580460138015713571358020/111111111111111111111111111111.
Continued fraction expansion of 808690/(525316 + sqrt(382161348866)) (with offset 0).

Crossrefs

The number of unitary prime(k)-smooth divisors of n: A134451 (k = 1), A382488 (k = 2), this sequence (k = 3).

Programs

  • Mathematica
    a[n_] := Product[If[Divisible[n, p], 2, 1], {p, {2, 3, 5}}]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> !((n % 30) % x) + 1, [2, 3, 5]))

Formula

Multiplicative with a(p^e) = 2 if p <= 5, and 1 otherwise.
a(n) = A034444(A355582(n)).
a(n) = A034444(n) if and only if n is 5-smooth (A051037).
a(n) = A355583(n) if and only if n is squarefree (A005117).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 12/5.
In general, the asymptotic mean of the number of unitary prime(k)-smooth divisors of n is A054640(k)/A002110(k) = A236435(k)/A236436(k).
Dirichlet g.f.: (1 + 1/2^s) * (1 + 1/3^s) * (1 + 1/5^s) * zeta(s).
In general, Dirichlet g.f. of the number of unitary prime(k)-smooth divisors of n is zeta(s) * Product_{p prime <= prime(k)} (1 + 1/p^s).

A382490 The number of infinitary 3-smooth divisors of n.

Original entry on oeis.org

1, 2, 2, 2, 1, 4, 1, 4, 2, 2, 1, 4, 1, 2, 2, 2, 1, 4, 1, 2, 2, 2, 1, 8, 1, 2, 4, 2, 1, 4, 1, 4, 2, 2, 1, 4, 1, 2, 2, 4, 1, 4, 1, 2, 2, 2, 1, 4, 1, 2, 2, 2, 1, 8, 1, 4, 2, 2, 1, 4, 1, 2, 2, 4, 1, 4, 1, 2, 2, 2, 1, 8, 1, 2, 2, 2, 1, 4, 1, 2, 2, 2, 1, 4, 1, 2, 2
Offset: 1

Views

Author

Amiram Eldar, Mar 29 2025

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := 2^(DigitCount[IntegerExponent[n, 2], 2, 1] + DigitCount[IntegerExponent[n, 3], 2, 1]); Array[a, 100]
  • PARI
    a(n) = 1 << (hammingweight(valuation(n, 2)) + hammingweight(valuation(n, 3)));

Formula

Multiplicative with a(p^e) = 2^A000120(e) of p <= 3, and 1 otherwise.
a(n) = 2^(A000120(A007814(n)) + A000120(A007949(n))).
a(n) = A037445(A065331(n)).
a(n) = A037445(n) if and only if n is 3-smooth (A003586).
a(n) = A382488(n) if and only if n is an exponentially 2^n number (A138302).
a(n) = A072078(n) if and only if n is a product of a 5-rough number (A007310) and a 3-smooth number whose number of divisors is a power of 2 (i.e., in both A003586 and A036537).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = (1/3) * Product_{k>=0} (1+1/2^(2^k-1))*(1+2/3^(2^k)) = 2.36739050930467832207... .
Showing 1-5 of 5 results.