cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A382489 The number of unitary 5-smooth divisors of n.

Original entry on oeis.org

1, 2, 2, 2, 2, 4, 1, 2, 2, 4, 1, 4, 1, 2, 4, 2, 1, 4, 1, 4, 2, 2, 1, 4, 2, 2, 2, 2, 1, 8, 1, 2, 2, 2, 2, 4, 1, 2, 2, 4, 1, 4, 1, 2, 4, 2, 1, 4, 1, 4, 2, 2, 1, 4, 2, 2, 2, 2, 1, 8, 1, 2, 2, 2, 2, 4, 1, 2, 2, 4, 1, 4, 1, 2, 4, 2, 1, 4, 1, 4, 2, 2, 1, 4, 2, 2, 2
Offset: 1

Views

Author

Amiram Eldar, Mar 29 2025

Keywords

Comments

Period 30: repeat [1, 2, 2, 2, 2, 4, 1, 2, 2, 4, 1, 4, 1, 2, 4, 2, 1, 4, 1, 4, 2, 2, 1, 4, 2, 2, 2, 2, 1, 8].
In general, the sequence of the number of unitary prime(k)-smooth divisors of n, for k >= 1, is periodic with period A002110(k).
Decimal expansion of 135804580460138015713571358020/111111111111111111111111111111.
Continued fraction expansion of 808690/(525316 + sqrt(382161348866)) (with offset 0).

Crossrefs

The number of unitary prime(k)-smooth divisors of n: A134451 (k = 1), A382488 (k = 2), this sequence (k = 3).

Programs

  • Mathematica
    a[n_] := Product[If[Divisible[n, p], 2, 1], {p, {2, 3, 5}}]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> !((n % 30) % x) + 1, [2, 3, 5]))

Formula

Multiplicative with a(p^e) = 2 if p <= 5, and 1 otherwise.
a(n) = A034444(A355582(n)).
a(n) = A034444(n) if and only if n is 5-smooth (A051037).
a(n) = A355583(n) if and only if n is squarefree (A005117).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 12/5.
In general, the asymptotic mean of the number of unitary prime(k)-smooth divisors of n is A054640(k)/A002110(k) = A236435(k)/A236436(k).
Dirichlet g.f.: (1 + 1/2^s) * (1 + 1/3^s) * (1 + 1/5^s) * zeta(s).
In general, Dirichlet g.f. of the number of unitary prime(k)-smooth divisors of n is zeta(s) * Product_{p prime <= prime(k)} (1 + 1/p^s).