cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A382491 a(n) is the numerator of the asymptotic density of the numbers whose number of 3-smooth divisors is n.

This page as a plain text file.
%I A382491 #7 Mar 29 2025 04:23:13
%S A382491 1,5,13,71,97,1355,793,19163,53473,292355,60073,13102907,535537,
%T A382491 78584915,790859641,3523099499,43112257,99646519235,387682633,
%U A382491 2764285630427,7604811750289,7337148996275,31385253913,2226944658077771,3656440886376673,2341258386360995,80539587570991081
%N A382491 a(n) is the numerator of the asymptotic density of the numbers whose number of 3-smooth divisors is n.
%C A382491 The denominator that corresponds to a(n) is 3*6^(n-1) = A169604(n-1) = A081341(n).
%H A382491 Amiram Eldar, <a href="/A382491/b382491.txt">Table of n, a(n) for n = 1..1000</a>
%F A382491 a(n) = Sum_{d|n} 2^(n-d) * 3^(n-n/d).
%F A382491 a(p) = 2^(p-1) + 3^(p-1).
%F A382491 Let f(n) = a(n)/A081341(n). Then:
%F A382491 f(n) = (1/3) * Sum_{d|n} (1/2)^(d-1) * (1/3)^(n/d-1).
%F A382491 Sum_{n>=1} f(n) = 1.
%F A382491 Sum_{n>=1} n * f(n) = 3 (the asymptotic mean of A072078).
%F A382491 Sum_{n>=1} n^2 * f(n) = 18, and therefore, the asymptotic variance of A072078 is 18 - 3^2 = 9, and its asymptotic standard deviation is 3.
%e A382491 Fractions begin with 1/3, 5/18, 13/108, 71/648, 97/3888, 1355/23328, 793/139968, 19163/839808, 53473/5038848, 292355/30233088, 60073/181398528, 13102907/1088391168, ...
%e A382491 a(1) = 1 since a(1)/A081341(1) = 1/3 is the asymptotic density of the numbers with a single 3-smooth divisor, 1, i.e., the numbers that are congruent to 1 or 5 mod 6 (A007310).
%e A382491 a(2) = 5 since a(2)/A081341(2) = 5/18 is the asymptotic density of the numbers with exactly two 3-smooth divisors, either 1 and 2 or 1 and 3, i.e., A171126.
%t A382491 a[n_] := DivisorSum[n, 2^(n-#) * 3^(n-n/#) &]; Array[a, 30]
%o A382491 (PARI) a(n) = sumdiv(n, d, 2^(n-d)*3^(n-n/d));
%Y A382491 Cf. A007310, A072078, A081341 (denominators), A169604, A171126.
%K A382491 nonn,easy,frac
%O A382491 1,2
%A A382491 _Amiram Eldar_, Mar 29 2025