This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A382492 #12 Apr 26 2025 03:33:09 %S A382492 1,2,4,6,16,12,64,24,36,48,1024,72,4096,192,144,216,65536,288,262144, %T A382492 432,576,3072,4194304,864,1296,12288,2304,1728,268435456,2592, %U A382492 1073741824,3456,9216,196608,5184,6912,68719476736,786432,36864,10368,1099511627776,15552,4398046511104 %N A382492 a(n) is the least number that has exactly n 3-smooth divisors. %C A382492 The record values occur at A046022. %C A382492 All the terms are in A003586 and A025487. %H A382492 Amiram Eldar, <a href="/A382492/b382492.txt">Table of n, a(n) for n = 1..3322</a> %F A382492 a(n) = Min_{d|n} (2^(d-1)*3^(n/d-1)). %F A382492 a(n) = 2^A382493(n) * 3^(n/(A382493(n)+1)-1). %F A382492 a(p) = 2^(p-1) for prime p. %F A382492 a(n) = A005179(n) if n is in A037143. %t A382492 a[n_] := Min[Table[2^(d-1)*3^(n/d-1), {d, Divisors[n]}]]; Array[a, 60] %o A382492 (PARI) a(n) = vecmin(apply(d -> 2^(d-1)*3^(n/d-1), divisors(n))); %Y A382492 Cf. A003586, A005179, A025487, A037143, A046022, A072078, A382493. %K A382492 nonn,easy %O A382492 1,2 %A A382492 _Amiram Eldar_, Mar 29 2025