A382497 Decimal expansion of 3*log(x0)/(log(8*x0/3) - 8 + Pi/sqrt(3)), where x0 is the unique real root of 96*x^3 - 786663*x^2 + 17288*x - 96 = 0.
7, 1, 0, 3, 2, 0, 5, 3, 3, 4, 1, 3, 7, 0, 0, 1, 7, 2, 7, 5, 0, 5, 7, 7, 3, 4, 2, 2, 8, 1, 0, 3, 0, 8, 4, 9, 8, 5, 2, 4, 7, 8, 9, 9, 9, 1, 7, 8, 7, 1, 8, 0, 8, 3, 3, 7, 8, 1, 3, 9, 9, 7, 1, 7, 9, 7, 3, 1, 3, 5, 8, 9, 5, 2, 1, 4, 6, 4, 6, 1, 0, 5, 9, 9, 6, 4, 2, 2, 1, 1
Offset: 1
Examples
x0 = 8194.38427358233563630075... mu(Pi) <= 3*log(x0)/(log(8*x0/3) - 8 + Pi/sqrt(3)) = 7.10320533413700172750...
Links
- Li Lai, Johannes Sprang, and Wadim Zudilin, A note on the irrationality of zeta_2(5), arXiv:2505.05005 [math.NT], 2025. See p. 2.
- Eric Weisstein's World of Mathematics, Irrationality Measure.
- Wikipedia, Irrationality measure.
- Doron Zeilberger and Wadim Zudilin, The irrationality measure of π is at most 7.103205334137..., arXiv:1912.06345 [math.NT], 2019-2020; Moscow Journal of Combinatorics and Number Theory, 9 (4): 407-419.
Programs
-
PARI
my(x0 = solve(x=8194, 8195, 96*x^3 - 786663*x^2 + 17288*x - 96)); 3*log(x0)/(log(8*x0/3) - 8 + Pi/sqrt(3))
Comments