cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A382512 Expansion of Sum_{p prime} x^p / (1 - x^p)^p.

This page as a plain text file.
%I A382512 #4 Apr 04 2025 22:45:35
%S A382512 0,1,1,2,1,6,1,4,6,10,1,16,1,14,30,8,1,30,1,45,56,22,1,48,70,26,45,98,
%T A382512 1,196,1,16,132,34,420,96,1,38,182,350,1,588,1,308,615,46,1,160,924,
%U A382512 740,306,481,1,198,2002,1744,380,58,1,1605,1,62,3234,32,3640
%N A382512 Expansion of Sum_{p prime} x^p / (1 - x^p)^p.
%F A382512 a(n) = Sum_{p|n, p prime} binomial(n/p+p-2, p-1).
%t A382512 nmax = 65; CoefficientList[Series[Sum[x^Prime[k]/(1 - x^Prime[k])^Prime[k], {k, 1, nmax}], {x, 0, nmax}], x] // Rest
%Y A382512 Cf. A001221, A069359, A157019, A322078, A373458, A373459.
%K A382512 nonn
%O A382512 1,4
%A A382512 _Ilya Gutkovskiy_, Mar 30 2025