cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A382520 Primes prime(k) such that k^k == k (mod prime(k)).

This page as a plain text file.
%I A382520 #33 Aug 30 2025 02:26:23
%S A382520 2,7,1009,2689,12979,185161,203659,227251,246773,364717,1681853,
%T A382520 2432093,169985089,189961939,466446781,1126270367,9257864617,
%U A382520 41161886351,100877549917,168710890321,369064364689,2938399534589,19737992109859,27365163273061
%N A382520 Primes prime(k) such that k^k == k (mod prime(k)).
%F A382520 a(n) = A000040(A177005(n)). - _Michael S. Branicky_, May 18 2025
%e A382520 7 is a term because 7 = prime(4) and 4^4 == 4 (mod 7).
%o A382520 (Magma) [NthPrime(k): k in [1..35000] | k^k mod NthPrime(k) eq k];
%Y A382520 Cf. A000040, A177005, A381903.
%K A382520 nonn,more,changed
%O A382520 1,1
%A A382520 _Juri-Stepan Gerasimov_, May 17 2025
%E A382520 a(12)-a(24) from _Michael S. Branicky_, May 18 2025 using A177005