This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A382521 #16 Apr 01 2025 18:54:32 %S A382521 1,3,0,6,3,0,10,9,3,0,15,18,15,3,0,21,30,36,18,3,0,28,45,66,55,24,3,0, %T A382521 36,63,105,114,81,27,3,0,45,84,153,195,189,108,33,3,0,55,108,210,298, %U A382521 348,276,145,36,3,0,66,135,276,423,558,552,405,180,42,3,0,78,165,351,570,819,936,858,549,225,45,3,0 %N A382521 Square array A(n,k), n>=0, k>=0, read by antidiagonals downwards, where n unlabeled objects are distributed into k containers of three kinds. Containers may be left empty. %F A382521 A(0,k) = binomial(k + 2, 2) = A000217(k + 1). %F A382521 A(1,k) = 3 * binomial(k + 1, 2). %F A382521 A(n,1) = 3. %F A382521 A(n,k) = Sum_{i=0..k} binomial(k + 2 - i, 2) * A382343(n,i) for k <= n. %F A382521 A(n,k) = A382343(n+k,k). %e A382521 Array starts: %e A382521 0 : [1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66] %e A382521 1 : [0, 3, 9, 18, 30, 45, 63, 84, 108, 135, 165] %e A382521 2 : [0, 3, 15, 36, 66, 105, 153, 210, 276, 351, 435] %e A382521 3 : [0, 3, 18, 55, 114, 195, 298, 423, 570, 739, 930] %e A382521 4 : [0, 3, 24, 81, 189, 348, 558, 819, 1131, 1494, 1908] %e A382521 5 : [0, 3, 27, 108, 276, 552, 936, 1428, 2028, 2736, 3552] %e A382521 6 : [0, 3, 33, 145, 405, 858, 1532, 2427, 3543, 4880, 6438] %e A382521 7 : [0, 3, 36, 180, 549, 1248, 2340, 3861, 5811, 8190, 10998] %e A382521 8 : [0, 3, 42, 225, 741, 1785, 3510, 6000, 9300, 13410, 18330] %e A382521 9 : [0, 3, 45, 271, 957, 2451, 5051, 8967, 14307, 21126, 29424] %e A382521 10 : [0, 3, 51, 324, 1227, 3312, 7137, 13125, 21552, 32553, 46194] %e A382521 ... %p A382521 b:= proc(n, i) option remember; expand(`if`(n=0, 1, `if`(i<1, 0, %p A382521 add(x^j*b(n-i*j, min(n-i*j, i-1))*(j+2)*(j+1)/2, j=0..n/i)))) %p A382521 end: %p A382521 A:= (n, k)-> coeff(b(n+k$2), x, k): %p A382521 seq(seq(A(n, d-n), n=0..d), d=0..11); # _Alois P. Heinz_, Mar 31 2025 %o A382521 (Python) %o A382521 from sympy import binomial %o A382521 from sympy.utilities.iterables import partitions %o A382521 def a_row(n, length=11) : %o A382521 if n == 0 : return [ binomial( k + 2, 2) for k in range( length) ] %o A382521 t = list( [0] * length) %o A382521 for p in partitions( n): %o A382521 fact = 1 %o A382521 s = 0 %o A382521 for k in p : %o A382521 s += p[k] %o A382521 fact *= binomial( 2 + p[k], 2) %o A382521 if s > 0 : %o A382521 t[s] += fact %o A382521 a = list( [0] * length) %o A382521 for i in range( 1, length): %o A382521 for j in range( i, 0, -1): %o A382521 a[i] += t[j] * binomial( i - j + 2, 2) %o A382521 return a %o A382521 for n in range(11): print(a_row(n)) %Y A382521 Antidiagonal sums give A000716. %Y A382521 Alternating antidiagonal sums give A107635. %Y A382521 Without empty containers: A382025. %Y A382521 Cf. A382343, A000217, 2 kinds: A382345. %K A382521 nonn,tabl %O A382521 0,2 %A A382521 _Peter Dolland_, Mar 30 2025