This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A382522 #14 Aug 07 2025 08:55:30 %S A382522 1,4,0,10,4,0,20,16,4,0,35,40,26,4,0,56,80,80,32,4,0,84,140,180,124, %T A382522 42,4,0,120,224,340,320,184,48,4,0,165,336,574,660,535,248,58,4,0,220, %U A382522 480,896,1184,1200,800,332,64,4,0,286,660,1320,1932,2284,1956,1176,416,74,4,0 %N A382522 Square array A(n,k), n>=0, k>=0, read by antidiagonals downwards, where n unlabeled objects are distributed into k containers of four kinds. Containers may be left empty. %F A382522 A(0,k) = binomial(k + 3, 3) = A000292(k + 1). %F A382522 A(1,k) = 4 * binomial(k + 2, 3). %F A382522 A(n,1) = 4. %F A382522 A(n,k) = Sum_{i=0..k} binomial(k + 3 - i, 3) * A382344(n,i) for k <= n. %F A382522 A(n,k) = A382344(n+k,k). %e A382522 Array starts: %e A382522 0 : [1, 4, 10, 20, 35, 56, 84, 120, 165, 220, 286] %e A382522 1 : [0, 4, 16, 40, 80, 140, 224, 336, 480, 660, 880] %e A382522 2 : [0, 4, 26, 80, 180, 340, 574, 896, 1320, 1860, 2530] %e A382522 3 : [0, 4, 32, 124, 320, 660, 1184, 1932, 2944, 4260, 5920] %e A382522 4 : [0, 4, 42, 184, 535, 1200, 2284, 3892, 6129, 9100, 12910] %e A382522 5 : [0, 4, 48, 248, 800, 1956, 3968, 7088, 11568, 17660, 25616] %e A382522 6 : [0, 4, 58, 332, 1176, 3080, 6618, 12364, 20892, 32776, 48590] %e A382522 7 : [0, 4, 64, 416, 1616, 4560, 10368, 20280, 35536, 57376, 87040] %e A382522 8 : [0, 4, 74, 520, 2187, 6580, 15778, 32196, 58414, 97012, 150570] %e A382522 9 : [0, 4, 80, 628, 2848, 9140, 23088, 49172, 92352, 157808, 250720] %e A382522 10 : [0, 4, 90, 752, 3660, 12440, 33002, 73188, 142160, 249740, 406036] %e A382522 ... %p A382522 b:= proc(n, i) option remember; expand(`if`(n=0, 1, `if`(i<1, 0, %p A382522 add(x^j*b(n-i*j, min(n-i*j, i-1))*binomial(j+3, 3), j=0..n/i)))) %p A382522 end: %p A382522 A:= (n, k)-> coeff(b(n+k$2), x, k): %p A382522 seq(seq(A(n, d-n), n=0..d), d=0..10); # _Alois P. Heinz_, Mar 31 2025 %t A382522 b[n_, i_] := b[n, i] = Expand[If[n == 0, 1, If[i < 1, 0, Sum[x^j*b[n-i*j, Min[n-i*j, i-1]]*Binomial[j+3, 3], {j, 0, n/i}]]]]; %t A382522 A[n_, k_] := Coefficient[b[n+k, n+k], x, k]; %t A382522 Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 10}] // Flatten (* _Jean-François Alcover_, Aug 07 2025, after _Alois P. Heinz_ *) %o A382522 (Python) %o A382522 from sympy import binomial %o A382522 from sympy.utilities.iterables import partitions %o A382522 def a_row(n, length=11) : %o A382522 if n == 0 : return [ binomial( k + 3, 3) for k in range( length) ] %o A382522 t = list( [0] * length) %o A382522 for p in partitions( n): %o A382522 fact = 1 %o A382522 s = 0 %o A382522 for k in p : %o A382522 s += p[k] %o A382522 fact *= binomial( 3 + p[k], 3) %o A382522 if s > 0 : %o A382522 t[s] += fact %o A382522 a = list( [0] * length) %o A382522 for i in range( 1, length): %o A382522 for j in range( i, 0, -1): %o A382522 a[i] += t[j] * binomial( i - j + 3, 3) %o A382522 return a %o A382522 for n in range(11): print(a_row(n)) %Y A382522 Antidiagonal sums give A023003. %Y A382522 Without empty containers: A382041. %Y A382522 Cf. A382344, A000292, 2 kinds: A382345, 3 kinds: A382521. %K A382522 nonn,tabl %O A382522 0,2 %A A382522 _Peter Dolland_, Mar 31 2025