A382523 Number of non-isomorphic finite multisets of size n that can be partitioned into sets with distinct sums.
1, 1, 2, 3, 4, 6, 9, 13, 18, 25, 34, 45
Offset: 0
Examples
First differs from A381996 in not counting the following under a(12): {1,1,1,1,1,1,2,2,3,3,4,5} {1,1,1,1,2,2,2,2,3,3,3,3} The a(1) = 1 through a(6) = 6 multisets: {1} {1,2} {1,1,2} {1,1,2,2} {1,1,1,2,3} {1,1,1,2,2,3} {1,2,3} {1,1,2,3} {1,1,2,2,3} {1,1,1,2,3,4} {1,2,3,4} {1,1,2,3,4} {1,1,2,2,3,3} {1,2,3,4,5} {1,1,2,2,3,4} {1,1,2,3,4,5} {1,2,3,4,5,6}
Crossrefs
Programs
-
Mathematica
strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n]; sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; Table[Length[Select[strnorm[n],Select[mps[#],UnsameQ@@Total/@#&&And@@UnsameQ@@@#&]!={}&]],{n,0,5}]
Comments