This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A382524 #6 Apr 03 2025 20:34:42 %S A382524 1,1,2,2,5,2,6,2,10,3,6,2,24,2,6,4,17,2,36,2,18,4,6,2,86,3,6,10,18,2, %T A382524 44,2,50,4,6,4,159,2,6,4,62,2,44,2,18,30,6,2,486,3,12,4,18,2,140,4,62, %U A382524 4,6,2,932,2,6,30,157,4,44,2,18,4,20,2,1500,2,6 %N A382524 Number of ways to choose a different constant partition of each part of a constant partition of n. %C A382524 These are strict twice-partitions of weight n and type PRR. %H A382524 Gus Wiseman, <a href="/A063834/a063834.txt">Sequences enumerating triangles of integer partitions</a> %F A382524 a(n) = Sum_{d|n} binomial(A000005(n/d),d) * d! %e A382524 The a(1) = 1 through a(8) = 10 twice-partitions: %e A382524 (1) (2) (3) (4) (5) (6) (7) (8) %e A382524 (11) (111) (22) (11111) (33) (1111111) (44) %e A382524 (1111) (222) (2222) %e A382524 (11)(2) (111111) (22)(4) %e A382524 (2)(11) (111)(3) (4)(22) %e A382524 (3)(111) (1111)(4) %e A382524 (4)(1111) %e A382524 (11111111) %e A382524 (1111)(22) %e A382524 (22)(1111) %t A382524 Table[If[n==0,1,Sum[Binomial[Length[Divisors[n/d]],d]*d!,{d,Divisors[n]}]],{n,0,100}] %Y A382524 For distinct instead of equal block-sums we have A279786. %Y A382524 This is the strict case of A279789. %Y A382524 The orderless version is A304442, see A353833, A381995, A381871. %Y A382524 Multiset partitions of this type are ranked by A326534 /\ A355743 /\ A005117. %Y A382524 Partitions with no partition of this type are counted by A382076, strict case of A381993. %Y A382524 Normal multiset partitions of this type are counted by the strict case of A382204. %Y A382524 A006171 counts multiset partitions into constant blocks of integer partitions of n. %Y A382524 A050361 counts factorizations into distinct prime powers, see A381715. %Y A382524 A317141 counts coarsenings of prime indices, refinements A300383. %Y A382524 Cf. A000005, A000040, A000688, A018818, A047966, A063834, A260685, A279784, A356065, A381453, A381455. %K A382524 nonn %O A382524 0,3 %A A382524 _Gus Wiseman_, Apr 03 2025