A382525 Number of times n appears in A048767 (rank of Look-and-Say partition of prime indices). Number of ordered set partitions whose block-sums are the prime signature of n.
1, 1, 1, 1, 1, 0, 1, 2, 1, 0, 1, 1, 1, 0, 0, 2, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 2, 1, 1, 0, 1, 3, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 4, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 2, 0, 1, 0, 0, 0, 0
Offset: 1
Keywords
Examples
The a(27) = 2 partitions with Look-and-Say partition (2,2,2) are: (3,3), (2,2,1,1). The prime indices of 3456 are {1,1,1,1,1,1,1,2,2,2}, and the partitions with Look-and-Say partition (2,2,2,1,1,1,1,1,1,1) are: (7,3,3) (7,2,2,1,1) (6,3,3,1) (5,3,3,2) (4,3,3,2,1) (4,3,2,2,1,1) so a(3456) = 6.
Crossrefs
Programs
-
Mathematica
stp[y_]:=Select[Tuples[Select[IntegerPartitions[#],UnsameQ@@#&]&/@y],UnsameQ@@Join@@#&]; Table[Length[stp[Last/@FactorInteger[n]]],{n,100}]
Formula
a(2^n) = A000009(n).
a(prime(n)) = 1.
Comments