This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A382526 #6 Apr 07 2025 09:26:45 %S A382526 0,0,1,1,2,3,4,6,9,12,16,24,30,41,56,72,94,124,158,205,262,331,419, %T A382526 531,663,829,1033,1281,1581,1954,2393,2936,3584,4366,5300,6433,7764, %U A382526 9374,11277,13548,16225,19425,23166,27623,32842,39004,46212,54719,64610,76251 %N A382526 Number of integer partitions of n with fewer ones than greatest multiplicity. %e A382526 The a(2) = 1 through a(9) = 12 partitions: %e A382526 (2) (3) (4) (5) (6) (7) (8) (9) %e A382526 (22) (32) (33) (43) (44) (54) %e A382526 (221) (42) (52) (53) (63) %e A382526 (222) (322) (62) (72) %e A382526 (331) (332) (333) %e A382526 (2221) (422) (432) %e A382526 (2222) (441) %e A382526 (3221) (522) %e A382526 (22211) (3222) %e A382526 (3321) %e A382526 (4221) %e A382526 (22221) %t A382526 Table[Length[Select[IntegerPartitions[n],Count[#,1]<Max@@Length/@Split[DeleteCases[#,1]]&]],{n,0,30}] %Y A382526 The complement (greater than or equal to) is A241131 except first, ranks A360015. %Y A382526 The opposite version (greater than) is A241131 shifted except first, ranks A360013. %Y A382526 These partitions have ranks A382856, complement A360015. %Y A382526 The weak version (less than or equal to) is A381544, ranks A381439. %Y A382526 For equality we have A382303, ranks A360014. %Y A382526 A000041 counts integer partitions, strict A000009. %Y A382526 A008284 counts partitions by length, strict A008289. %Y A382526 A047993 counts partitions with max part = length, ranks A106529. %Y A382526 A091602 counts partitions by the greatest multiplicity, rank statistic A051903. %Y A382526 A116598 counts ones in partitions, rank statistic A007814. %Y A382526 A239964 counts partitions with max multiplicity = length, ranks A212166. %Y A382526 A240312 counts partitions with max part = max multiplicity, ranks A381542. %Y A382526 A382302 counts partitions with max = max multiplicity = distinct length, ranks A381543. %Y A382526 Cf. A047966, A091605, A116861, A232697, A237984, A362608, A363724, A381079, A381437, A381438. %K A382526 nonn %O A382526 0,5 %A A382526 _Gus Wiseman_, Apr 05 2025