This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A382534 #8 Apr 02 2025 05:49:25 %S A382534 3,9,9,36,15,81,21,36,27,225,33,36,39,441,45,36,51,729,57,36,63,1089, %T A382534 69,36,75,1521,81,36,87,2025,93,36,99,2601,105,36,111,3249,117,36 %N A382534 Number of minimum total dominating sets in the n-flower graph. %C A382534 The flower graph is defined for n >= 5. Sequence extended to n = 1 using the formula. %H A382534 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/FlowerGraph.html">Flower Graph</a>. %H A382534 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/MinimumTotalDominatingSet.html">Minimum Total Dominating Set</a>. %H A382534 <a href="/index/Rec#order_12">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,3,0,0,0,-3,0,0,0,1). %F A382534 a(n) = 3*a(n-4)-3*a(n-8)+a(n-12). %F A382534 G.f.: -3*x*(1+3*x+3*x^2+12*x^3+2*x^4+18*x^5-2*x^6-24*x^7-3*x^8+3*x^9-x^10+12*x^11)/(x-1)^3/(1+x)^3/(x^2+1)^3 . - _R. J. Mathar_, Apr 02 2025 %t A382534 Table[Piecewise[{{36, Mod[n, 4] == 0}, {3 n, Mod[n, 2] == 1}, {9 n^2/4, Mod[n, 4] == 2}}], {n, 20}] %t A382534 LinearRecurrence[{0, 0, 0, 3, 0, 0, 0, -3, 0, 0, 0, 1}, {3, 9, 9, 36, 15, 81, 21, 36, 27, 225, 33, 36}, 20] %Y A382534 Cf. A017557 (4-section), A016946 (4-section), A017629 (4-section). %K A382534 nonn,easy %O A382534 1,1 %A A382534 _Eric W. Weisstein_, Mar 30 2025