cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A382553 Decimal expansion of Sum_{p prime} 1/((p - 1)^2*p^2).

This page as a plain text file.
%I A382553 #8 Apr 01 2025 20:23:07
%S A382553 2,8,0,9,9,9,0,7,6,6,9,0,1,1,0,5,3,0,6,9,5,0,6,1,5,7,5,6,4,2,8,0,2,8,
%T A382553 4,2,1,1,5,3,4,8,6,3,1,2,4,8,8,3,7,7,8,3,8,2,3,5,9,6,1,3,1,5,2,8,9,8,
%U A382553 2,6,8,3,5,2,6,9,9,9,3,3,4,2,1,1,2,6,7,6,7,9,1,2,4,8,5,3,3,3,6
%N A382553 Decimal expansion of Sum_{p prime} 1/((p - 1)^2*p^2).
%H A382553 <a href="/wiki/Index_to_constants#Start_of_section_P">Index to constants which are prime zeta sums</a> {2,2,0}.
%F A382553 Equals A085548 - 2*A136141 + A086242.
%F A382553 Equals Sum_{k>=4} (k-3) * P(k), where P is the prime zeta function. - _Amiram Eldar_, Apr 01 2025
%e A382553 0.2809990766901105306950615756428028421153486312488377838...
%o A382553 (PARI) sumeulerrat(1/((p-1)^2*p^2)) \\ _Amiram Eldar_, Apr 01 2025
%Y A382553 Cf. A085548, A086242, A136141.
%K A382553 nonn,cons
%O A382553 0,1
%A A382553 _Artur Jasinski_, Mar 31 2025