cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A382557 Decimal expansion of Sum_{p prime} 1/((p - 1)^2*p^3).

This page as a plain text file.
%I A382557 #13 Apr 01 2025 09:36:52
%S A382557 1,3,4,8,5,2,4,6,6,9,8,0,8,2,4,4,3,7,7,6,0,3,5,0,7,9,5,2,8,4,8,1,5,0,
%T A382557 8,1,6,4,5,2,5,0,7,6,0,3,3,1,6,9,3,4,4,7,1,3,7,6,8,1,0,1,1,2,2,5,0,7,
%U A382557 0,2,7,1,9,2,9,8,0,6,3,9,8,4,6,2,0,6,0,6,6,5,1,9,3,4,1,1,9
%N A382557 Decimal expansion of Sum_{p prime} 1/((p - 1)^2*p^3).
%H A382557 <a href="/wiki/Index_to_constants#Start_of_section_P">Index to constants which are prime zeta sums</a> {3,2,0}.
%F A382557 Equals 2*A085548 + A085541 - 3*A136141 + A086242.
%F A382557 Equals Sum_{k>=5} (k-4)*P(k), where P is the prime zeta function. - _Amiram Eldar_, Apr 01 2025
%e A382557 0.1348524669808244377603507952848150816452507...
%o A382557 (PARI) sumeulerrat(1/((p-1)^2*p^3)) \\ _Amiram Eldar_, Apr 01 2025
%Y A382557 Cf. A086242, A085541, A085548, A136141.
%K A382557 nonn,cons
%O A382557 0,2
%A A382557 _Artur Jasinski_, Mar 31 2025