cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A382560 Decimal expansion of Sum_{p prime} 1/((p - 1)^3*p).

This page as a plain text file.
%I A382560 #7 Apr 01 2025 20:23:20
%S A382560 5,4,5,6,2,0,7,7,2,0,5,9,7,3,9,8,8,6,8,8,0,3,9,8,1,3,5,6,1,5,6,3,3,0,
%T A382560 9,8,0,8,3,9,0,6,1,1,1,4,3,2,9,8,0,8,4,4,8,7,7,6,4,0,8,5,5,4,1,6,0,0,
%U A382560 6,9,0,5,8,0,2,7,2,3,5,7,3,8,7,6,5,4,3,3,9,3,7,7,9,4,2,3,6,5,0,5,5,3
%N A382560 Decimal expansion of Sum_{p prime} 1/((p - 1)^3*p).
%H A382560 <a href="/wiki/Index_to_constants#Start_of_section_P">Index to constants which are prime zeta sums</a> {1,3,0}.
%F A382560 Equals A136141 - A086242 + A380840.
%F A382560 Equals Sum_{k>=4} ((k-3)*(k-2)/2) * P(k), where P is the prime zeta function. - _Amiram Eldar_, Apr 01 2025
%e A382560 0.545620772059739886880398135615633098083906111...
%o A382560 (PARI) sumeulerrat(1/((p-1)^3*p)) \\ _Amiram Eldar_, Apr 01 2025
%Y A382560 Cf. A086242, A136141, A380840.
%K A382560 nonn,cons
%O A382560 0,1
%A A382560 _Artur Jasinski_, Mar 31 2025