cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A382568 Decimal expansion of Sum_{p prime} 1/(p^2*(p + 1)^2).

This page as a plain text file.
%I A382568 #6 Apr 01 2025 19:51:33
%S A382568 0,3,6,2,6,4,8,7,1,6,6,9,2,5,2,3,2,3,4,2,8,3,0,2,5,6,0,0,0,6,1,0,9,3,
%T A382568 8,0,5,2,2,0,8,6,1,5,6,4,7,0,5,1,3,3,0,8,3,8,9,6,5,7,8,7,9,3,1,0,1,3,
%U A382568 8,8,3,8,8,4,2,3,4,9,2,3,2,1,3,1,0,3,2,1,5,4,5,9,2,3,3,2,1,9,6,4,2,3,6,7,4
%N A382568 Decimal expansion of Sum_{p prime} 1/(p^2*(p + 1)^2).
%H A382568 <a href="/wiki/Index_to_constants#Start_of_section_P">Index to constants which are prime zeta sums</a> {2,0,2}.
%F A382568 Equals A085548 - 2*A179119 + A382554.
%F A382568 Equals Sum_{k>=4} (-1)^k * (k-3) * P(k), where P is the prime zeta function. - _Amiram Eldar_, Apr 01 2025
%e A382568 0.03626487166925232342830256000610938052208615647051330838965787931013...
%o A382568 (PARI) sumeulerrat(1/(p^2*(p+1)^2)) \\ _Amiram Eldar_, Apr 01 2025
%Y A382568 Cf. A085548, A179119, A382554.
%K A382568 nonn,cons
%O A382568 0,2
%A A382568 _Artur Jasinski_, Mar 31 2025